王信忠

王信忠(1909年—?)笔名王迅中江苏南通人。中国日本史专家。[1]

生平

1924年,王信忠考入江苏省第一师范学校第21届师范本科,后于1927年7月毕业。此后,他考入清华大学历史系,后来入清华大学研究生院,师从蒋廷黻,专研日本史、中日外交史。毕业后,清华大学公费派其赴日本东京学习。[1]在日本,他在东京帝国大学攻读政治学学位,并熟悉了日本政界。[2]

归国后,王信忠任清华大学历史系教授。抗日战争爆发后,王信忠任西南联合大学历史系教授,讲授中日外交史,其间和陈省身华罗庚住在一间宿舍。同时,他还是昆明“《今日评论》社”成员。[1]《今日评论》是西南联合大学教授在昆明最早创办的政论刊物,其后则是《当代评论》。王信中既是该二刊物的主要撰稿人,又是在昆明各报刊上发表日本评论最多者。[2]

1943年8月10日,王信忠离开昆明。8月9日,《云南日报》发表消息《王迅中教授赴美考察》称其“奉令赴美考察”,“出国期间约两年”。此后,王信忠在美国居住。何炳棣曾提及自己在哥伦比亚大学附近的房子,为1947年王信忠转让予他的。[2]后来,他还是《观察》杂志的“撰稿人”之一。[3]

著作

  • 王迅中,中日甲午战争之外交背景,清华大学,1937年
  • 王迅中、杨凤岐译,欧洲近世史及现代史,商务印书馆,1939年
  • 王迅中,日本历史概说,重庆正中书局,1942年
  • 王迅中,南进声中的日寇诡谋,今日评论第五卷第八期,1941年3月2日
  • 王迅中,三国同盟与中日
  • 王迅中,十年来的中日关系
  • 王迅中,日本军部与元老重臣
  • 王迅中,欧战爆发后敌国外交的动向
  • 王迅中,敌国内政外交的动向
  • 王迅中,日本外交政策的检讨
  • 王迅中,日本新阁的动向及对欧战的态度
  • 王迅中,日本内阁的更迭与今后的政局
  • 王迅中,论日苏关系
  • 王迅中,日本参加欧战问题
  • 王迅中,近卫第三次内阁
  • 王迅中,阿部新阁的出路
  • 王迅中,卷土重来的日寇对华攻势

参考文献

  1. ^ 1.0 1.1 1.2 王信忠,南通高等师范学校,2009-4-19 互联网档案馆存檔,存档日期2016-03-06.
  2. ^ 2.0 2.1 2.2 闻黎明:张世英、何柄棣、何兆武三书读后,人文与社会,2009-08-31. [2012-11-29]. (原始内容存档于2012-07-11). 
  3. ^ 陳永忠,儲安平生平與思想研究──國共不容的知識份子,秀威資訊科技股份有限公司,2009年,第123-128页

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Hujan es – berita · surat kabar · buku · cendekiawan · JSTOR Bongkahan hujan es berdiameter sekitar 6 cm (2.4 in) Bagian dari seri alamCuaca Musim kalender Dingin Semi Panas Gugur Musim tropis ...

 

Pan American Cyclo-cross ChampionshipsChampion's jerseyRace detailsDateOctober/NovemberDisciplineCyclo-crossOrganiserUnion Cycliste InternationaleHistoryFirst edition2014 (2014) The Pan American Cyclo-cross Championships are the continental cycling championships for cyclo-cross held annually for member nations of the Pan American Cycling Confederation. Riders competing in the championships are selected by the national governing body. The championships were first held in 2014 and hav...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Love Under the Full MoonGenreRomansa, FantasiSutradaraLi Haishu, Huang YanweiPresenterGong YuPemeranJu Jingyi Zheng YechengLagu pembukaStep by Step karya Jia YiNegara asalTiongkokBahasa asliMandarinJmlh. episode24ProduksiDurasi45 menitRumah produksiiQ...

Naval engagement fought in May 1862 Battle off MukahPart of Piracy in Asia and Pirate attacks in BorneoA map of Sarawak showing the location of the naval battle off Mukah in 1862.Date23 May 1862Locationoff Mukah, Borneo, South China SeaResult Sarawakian victory[1]Belligerents  Raj of Sarawak Moro PiratesCommanders and leaders John Brooke unknownStrength 1 steamer1 gunboat 6 prahusCasualties and losses ~1 killed~2 wounded1 steamer damaged1 gunboat damaged ~100 killed or wounded4 p...

 

1989 Cleveland mayoral election ← 1985 November 7, 1989 1993 →   Candidate Michael R. White George L. Forbes Party Nonpartisan Nonpartisan Popular vote 85,829 68,167 Percentage 55.74% 44.27% Mayor before election George Voinovich Republican Elected Mayor Michael R. White Democratic Elections in Ohio Federal government U.S. President 1804 1808 1812 1816 1820 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 ...

 

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Setembro de 2019) Bandeira das Seicheles Aplicação ... Proporção 1:2 Adoção 5 de janeiro de 1996 Tipo nacionais A atual Bandeira das Seicheles foi adotada em 5 de janeiro de 1996. Os habitantes de dizem que as bandas oblíquas simbolizam um país dinâmic...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Henri Bergson pada tahun 1927. Intuisi adalah metode filosofis yang dibuat oleh filsuf Prancis Henri Bergson. Dalam An Introduction to Metaphysics, Bergson memperkenalkan dua cara di mana suatu objek dapat diketahui, yaitu secara absolut dan relatif. B...

 

Hindu temple in Jammu & Kashmir, India Wangath Temple complexReligionAffiliationHinduismDistrictGanderbalDeityShivaLocationLocationNaranagState Jammu & KashmirCountry IndiaLocation in Jammu and Kashmir, IndiaShow map of Jammu and KashmirWangath Temple complex (India)Show map of IndiaGeographic coordinates34°21′N 74°58′E / 34.35°N 74.97°E / 34.35; 74.97ArchitectureCreatorJaluka Maurya, Son of Ashoka[citation needed] and later Lalitaditya Muk...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Abril de 2023) Antigo Convento de Nossa Senhora dos Mártires e da ConceiçãoApresentaçãoTipo conventopatrimónio culturalEstatuto patrimonial Em vias de classificação (d)LocalizaçãoLocalização Sacavém e Prior Velho Por...

Any electrical connector designed to work at radio frequencies in the multi-megahertz range Coaxial connector redirects here. Not to be confused with Coaxial power connector. Various popular RF connectors Electronic symbols for the plug and jack coaxial connectors Time-domain reflectometry shows reflections due to impedance variations in mated RF connectors. An RF connector (radio frequency connector) is a electrical connector designed to work at radio frequencies in the multi-megahertz range...

 

40°04′27″N 44°23′51″E / 40.07417°N 44.39750°E / 40.07417; 44.39750 Place in Ararat, ArmeniaSayat-Nova Սայաթ-ՆովաSayat-NovaShow map of ArmeniaSayat-NovaShow map of AraratCoordinates: 40°04′27″N 44°23′51″E / 40.07417°N 44.39750°E / 40.07417; 44.39750CountryArmeniaProvinceAraratMunicipalityMasisPopulation (2008) • Total1,875Time zoneUTC+4 • Summer (DST)UTC+5 Sayat-Nova (Armenian: Սայ...

 

  Collalba negra O. l. leucura, macho. O. l. riggenbachi en Merzouga, Marruecos.Estado de conservaciónPreocupación menor (UICN 3.1)[1]​TaxonomíaReino: AnimaliaFilo: ChordataClase: AvesOrden: PasseriformesFamilia: MuscicapidaeGénero: OenantheEspecie: O. leucura(Gmelin, 1789)Distribución [editar datos en Wikidata] Oenanthe leucura syenitica - MHNT La collalba negra (Oenanthe leucura)[2]​[3]​ es una especie de ave paseriforme de la familia Muscicapidae ...

American architect (1890–1985) For other people named Charles Murphy, see Charles Murphy (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Charles Murphy architect – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this template message) Charles Murp...

 

Đừng nhầm lẫn với hành tinh vi hình. 253 Mathilde, một tiểu hành tinh kiểu C. Tiểu hành tinh là một hành tinh vi hình—một vật thể không phải là hành tinh thực sự hay sao chổi—ở vòng trong hệ Mặt Trời. Chúng là những vật thể bằng đá, kim loại hoặc băng không có bầu khí quyển. Kích thước và hình dạng của các tiểu hành tinh khác nhau đáng kể, từ những tảng đá có đường kính 1 mét đ...

 

Election 1879 New York gubernatorial election ← 1876 November 4, 1879 1882 →   Nominee Alonzo B. Cornell Lucius Robinson John Kelly Party Republican Democratic Independent Democrat Popular vote 418,567 375,790 77,566 Percentage 46.68% 41.91% 8.65% Governor before election Lucius Robinson Democratic Elected Governor Alonzo B. Cornell Republican Elections in New York State Federal government Presidential elections 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828...

As a steamer as built History NameLady Edeline Operator<Balmain New Ferry Company, Sydney Ferries Limited, Sydney Harbour Transport Board, Public Transport Commission, Urban Transit Authority BuilderG A Washington of Balmain Launched1913 Out of servicelaid up 1984/5 FateSunk 1988 General characteristics Tonnage96 tons Length33.7 m PropulsionSteam (1914-1937), Diesel (from 1937) Speed11 knots as built, 9 knots as diesel Capacity544 Lady Edeline was a Sydney Harbour ferry built in 1913 for t...

 

Season of television series Season of television series South ParkSeason 25Home media release coverCountry of originUnited StatesNo. of episodes6ReleaseOriginal networkComedy CentralOriginal releaseFebruary 2 (2022-02-02) –March 16, 2022 (2022-03-16)Season chronology← PreviousSeason 24 Next →Season 26List of episodes The twenty-fifth season of the American animated sitcom series South Park premiered on Comedy Central on February 2, 2022[1][2] and...

 

Swiss battle rifle of 1957 7.5mm Stgw. 57 / F. ass. 57 7.5mm Sturmgewehr 57 (Stgw. 57)TypeBattle riflePlace of originSwitzerlandService historyIn service1957–presentUsed bySee UsersWars For the SG 510-4: 1973 Chilean coup d'état Production historyDesignerRudolf AmslerDesigned1950sManufacturerSchweizerische Industrie Gesellschaft (SIG) Waffenfabrik Bern Swiss subcontractorsProduced1957–1985VariantsSG 510-1, SG 510-2, SG 510-3, SG 510-4, SG 510-5, SG 510-6, SG 510-7 T (...

Peter AlexanderAlexander mewawancarai Senator Chris Coons pada 2016LahirPeter Marvin Alexander29 Juli 1976 (umur 47)Oakland, California, Amerika SerikatPendidikanHead-Royce SchoolAlmamaterNorthwestern UniversityPekerjaanWartawanTempat kerjaNBC NewsSuami/istriAlison Starling ​(m. 2012)​Anak2Orang tuaDavid dan Terry AlexanderKerabatRebecca Alexander (saudari) Peter Marvin Alexander[1] (lahir 29 Juli 1976) adalah seorang wartawan Amerika Serikat yang sek...

 

Heptadekagon beraturanHeptadekagon beraturanSisi dan titik pojok17Simbol Schläfli{17}Diagram Coxeter–DynkinGrup simetriDih17, [ ], (*), orderSudut dalam (derajat)≈158,82°Sifatcembung, siklik, sama kaki, isogonal, isotoksalDalam geometri, heptadekagon adalah sebuah poligon yang mempunyai tujuh belas sisi dan tujuh belas sudut. Sifat Sebuah poligon mempunyai 119 sisi diagonal. Hal ini dapat dibuktikan melalui rumus jumlah sisi diagonal suatu poligon: n ( n − 3 ) 2 , {\displaystyle ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!