Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, đặc trưng Euler (hoặc đặc trưng Euler-Poincaré) là một topo bất biến, một số mà nó mô tả hình dạng hoặc cấu trúc của một không gian tôpô không phụ thuộc vào cách nó được uốn cong. Nó thường được ký hiệu là .
Đặc trưng Euler (S) của một mặt phẳng S được chia làm các tam giác là số đỉnh trừ đi số cạnh cộng với số mặt của tam giác
Định lý: Đặc trưng Euler theo 2 phép phân chia tam giac của cùng 1 mặt phẳng là bằng nhau
Các đặc trưng Euler đã được xác định cho các khối đa diện và được sử dụng để chứng minh định lý khác nhau về chúng, bao gồm cả việc phân loại các khối Platon. Leonhard Euler, tên của ông đặt cho khái niệm này, đã có các công trình nghiên cứu đầu tiên về đặc trưng này. Trong toán học hiện đại, đặc trưng Euler xuất hiện từ phép đồng điều và liên hệ với nhiều bất biến khác.
Khối đa diện
Đặc trưng Euler được định nghĩa cổ điển cho các khối đa diện lồi, theo công thức
Kết quả này được gọi là công thức đa diện Euler hoặc định lý đa diện Euler. Đặc trưng Euler cho hình cầu (tức χ = 2), và áp dụng giống với khối đa diện hình cầu. Minh họa cho công thức trên một số khối đa diện được đưa ra dưới đây.
Trong đó V, E và F tương ứng là số đỉnh (góc), các cạnh và mặt trong đa diện nhất định. Bất kỳ bề mặt đa diện lồi của Euler có đặc trưng
Đối với các khối đa diện bình thường, Arthur Cayley thu được một dạng biến đổi của công thức Euler bằng cách sử dụng mật độ của khối đa diện D, số đỉnh và mặt :
Phiên bản này giữ cho cả hai khối đa diện lồi (nơi mật độ là tất cả 1), và không lồi đa diện Kepler-Poinsot:
Các đặc trưng Euler có thể được xác định cho đồ thị phẳng liên thông bằng cách cùng công thức như cho các bề mặt đa diện, nơi F là số lượng mặt trong đồ thị, bao gồm cả các mặt bên ngoài.
Đặc trưng Euler của bất kỳ đồ thị phẳng liên thông G là 2. Điều này có thể dễ dàng chứng minh bằng trực quan về số lượng k mặt được xác định bởi G, bắt đầu với một cây như trường hợp cơ sở. Đối với cây, E = V-1 và F = 1. Nếu G có thành phần bù C, cùng tranh luận bằng trực quan trên F cho thấy rằng . Một trong số ít các lý thuyết đồ thị của Cauchy cũng chứng minh kết quả này
Chứng minh công thức Euler
Có nhiều cách chứng minh cho công thức Euler. Trong số đó do Cauchy đưa ra vào năm 1811, như sau: Chúng minh áp dụng cho bất kỳ đa diện lồi, và nói chung cho bất kỳ đa diện có biên tương đương hình học với một mặt cầu và các mặt đa diện có tương đương tô pô với đĩa phẳng.
Xóa một mặt của bề mặt đa diện. Bằng cách kéo các cạnh của mặt mất tích xa nhau, biến dạng tất cả các phần còn lại thành một đồ thị phẳng của các điểm và các đường cong, được minh họa bằng hình đầu tiên của ba đồ thị cho các trường hợp đặc biệt của khối lập phương. (Giả sử rằng bề mặt đa diện đồng phôi với mặt cầu ngay từ đầu.Sau khi biến dạng này, những mặt chính tắc nói chung là không chính tắc nữa. Số đỉnh và cạnh vẫn như cũ, nhưng số lượng các mặt đã được giảm 1. Do đó, chứng minh công thức Euler cho đa diện giảm để chứng minh cho này bị biến dạng, đối tượng phẳng.
Nếu có một mặt với hơn ba bên, vẽ một đường chéo-có nghĩa là, một đường cong qua mặt kết nối hai đỉnh mà chưa được kết nối. Này cho biết thêm một cạnh và một mặt và không thay đổi số đỉnh, do đó, nó không thay đổi số lượng . (Giả định rằng tất cả các mặt đĩa cần thiết ở đây, để hiển thị thông qua định lý đường cong Jordan rằng hoạt động này làm tăng số lượng mặt lên một.) Tiếp tục bổ sung các cạnh theo cách này cho đến khi tất cả các mặt có hình tam giác.
Áp dụng nhiều lần một trong hai biến đổi sau đây, duy trì bất biến mà ranh giới bên ngoài luôn luôn là một chu kỳ đơn giản:
Xóa một hình tam giác với một cạnh tiếp giáp với bên ngoài, được minh họa bằng đồ thị thứ hai. Điều này làm giảm số cạnh và mặt của mỗi khối và không làm thay đổi số đỉnh, vì vậy nó bảo toàn .
Xóa một hình tam giác với hai cạnh chia bởi các bên ngoài của mạng, được minh họa bằng đồ thị thứ ba. Mỗi tam giác bị xoá tức là bỏ đi một đỉnh, hai cạnh và một mặt, vì vậy nó bảo toàn .
Những biến đổi cuối cùng giảm đồ thị hai chiều để một hình tam giác đơn. (Nếu không có sự đơn giản chu kỳ bất biến, loại bỏ một hình tam giác có thể ngắt kết nối hình tam giác còn lại, vô hiệu các phần còn lại của các đối số một để loại bỏ hợp lệ là một ví dụ cơ bản của một bắn phá..)
Tại thời điểm này hình tam giác đơn độc có V = 3, E = 3, và F = 1, do đó . Kể từ khi một trong hai bước chuyển đổi trên bảo quản số lượng này, chúng tôi đã cho thấy cho biến dạng, đối tượng phẳng như vậy, thể hiện cho đa diện. Điều này chứng minh định lý.
Các bề mặt đa diện được thảo luận ở trên, trong ngôn ngữ hiện đại, hai chiều hữu hạn CW-phức. (Chỉ khi những mặt tam giác được sử dụng, chúng là đơn hình phức hữu hạn hai chiều phức.) Nói chung, đối với bất kỳ CW-phức hữu hạn, đặc trưng Euler có thể được định nghĩa là tổng luân phiên
với kn là số ô của n chiều trong .
Tương tự, đối với một đơn hình phức, đặc trưng Euler bằng tổng luân phiên
với kn là số n-đơn trong phức.
Hơn nữa nói chung, với bất kỳ không gian topo, chúng ta có thể xác định số Betti thứ n bn như cấp bậc của các nhóm đồng điều đơn lẻ thứ n. Các đặc trưng Euler có thể được định nghĩa là tổng luân phiên.
Số này được định nghĩa tốt nếu các con số Betti là tất cả hữu hạn và nếu chúng không vượt quá một chỉ số nhất định index n0. Với đơn hình phức, đây không phải là định nghĩa giống như ở đoạn trên nhưng là một tính toán tương đồng cho thấy rằng hai định nghĩa sẽ cho cùng giá trị .
Tính chất
Đặc trưng Euler của bất kỳ đa tạp đóng chiều lẻ là 0.[2] Trường hợp cho các ví dụ định hướng là hệ quả của Tính đối ngẫu Poincaré. tính chất này được áp dụng nói chung cho bất kỳ Không gian Compắcđược phân tầng tất cả các lớp có số chiều lẻ. Hơn nữa, đặc trưng Euler thường được dùng tốt đối với nhiều phép tính cơ bản trên không gian topo, như sau.
Bất biến đồng luân
Bởi vì tính tương đồng là một bất biến topo (trong thực tế, một bất biến đồng luân — hai không gian tôpô đó là tương đương đồng luân có các nhóm tương đồng đẳng cấu), nên đó là đặc trưng Euler.
Ví dụ, bất kỳ đa diện lồi đồng phôi với quả cầu trong không gian ba chiều, do đó bề mặt của nó là đồng phôi (do đó tương đương đồng luân) để các quả cầu hai chiều, có Đặc trưng Euler là 2. Điều này giải thích lý do tại sao các khối đa diện lồi có đặc trưng Euler là 2.
Nguyên tắc hợp và loại trừ
Nếu M và N là 2 không gian topo bất kì, Ta có đặc trưng Euler của hội rời là tổng của các đặc trưng Euler của chúng, do đó tính tương đồng là cộng dưới 2 hội rời:
Nói một cách tổng quát hơn, nếu M và N là không gian con của X, thì ta có hội và giao của chúng. Trong một vài trường hợp, Đặc trưng Euler tuân theo một nguyên tắc hợp và loại trừ:
Nếu X là một không gian phân tầng tất cả các tầng của X đều là không gian, Nguyên tắc hợp và loại trừ dùng nếu M và N là hội của các phân tầng. Điều này áp dung trong trường hợp cụ thể nếu M và N là 1 dạng đại sốphức.[4]
Những tính chất cộng và nhân được cảm sinh bởi lực lượng của các tập hợp. Bằng cách này, đặc trưng Euler co thể được xem như 1 sự khái quát hóa (của) lực lượng; tham khảo [1].
Tính chất tích có thể được áp dụng rộng hơn cho các thành thớ với điều kiện nhất định.
Nếu là một thành thớ với thớ F, với không gian cơ sở Bliên thông đường, và thành thớ là định hướng trong một trường K, ta có các đặc trưng Euler với các hệ số trong trường K đáp ứng các tính chất tích:[5]
Điều này bao gồm những không gian tích và những không gian phủ như các trường hợp đặc biệt, và có thể được chứng minh bằng dãy phổ Serre trên sự tương hợp (của) một thành thớ.
Đối với các phân thớ, nó co thể được hiểu dưới dạng của một ánh xạ truyền – chú ý rằng đây là 1 ánh xạ được nâng lên và đi ngược lại với chiều ban đầu – thành phần của nó với các phép chiếu là phép nhân bởi các lớp Euler của thớ:[6]
Đặc trưng Euler của một mặt không được định hướng đóng có thể được tính theo giống không định hướng k (số mặt phẳng xạ ảnh thực trong 1 tổng liên thông phân tích của một bề mặt)
Với các đa tạp Riemann, Đặc trưng Euler cũng có thể được tìm bởi bằng cách lấy tích phân đường cong; xem Định lý Gauss– Bonnet trong trường hợp 2 chiều và Định lý tổng quát Gauss–Bonnet trường hợp tổng quát.
Một dạng rời rac tương tự của Định lý Gauss– Bonnet là định lý Descartes': "tổng góc khuyết" của một đa diện, được đo trong vòng tròn đầy đủ, là đặc trưng Euler của khối đa diện.
Định lý Hadwiger phát biểu rằng đặc trưng Euler là hàm số duy nhất (xê xích một phép nhân vô hướng) có các tính chất sau: bất biến dưới phép tịnh tiến, cộng tính hữu hạn, không-nhất-thiết-không-âm, xác định trên tập hợp các hội hữu hạn của các tập hợp compactlồi trong Rn, và thuần nhất tại bậc 0.
Ví dụ
Đặc trưng Euler có thể được tính dễ dàng cho các bề mặt tổng quát bằng cách tìm một đa giác (polygonization) của bề mặt (nghĩa là, một mô tả như một CW-phức) và sử dụng các định nghĩa trên.
Bất kỳ không gian co (tức là, nó tương đương đồng luân với 1 điểm) có tương đồng tầm thường, nghĩa là số Betti thứ 0 là 1 và những số khác là 0. Tóm lại, Đặc trưng Euler của nó là 1. Trường hợp này bao gồm không gian Euclid của bất kỳ chiều nào, cũng như quả cầu đơn vị đặc trong bất kì không gian Euclide — 1 chiều - khoảng, 2 chiều - đĩa, 3 chiều - quả cầu,...
Quả cầu n chiều có số Betti là một trong chiều 0 và n, và tất cả các số Betti khác là 0 Suy ra Đặc trưng Euler của nó là — tức là,hoặc 0 hoặc 2.
Không gian xạ ảnh thực n chiều là thương của n quả cầu bởi ánh xạ ngược. Suy ra rằng đặc trưng Euler của nó chính xác một nửa đã tương ứng của các quả cầu - Hoặc là 0 hoặc 1.
Hình xuyến n chiều là tích 2 không gian của n vòng tròn. đặc trưng Euler của nó là 2 bởi tính chất tích
Ví dụ quả bóng
Có bao nhiêu ngũ giác và hình lục giác tạo nên một quả bóng đá?
Giả sử sử dụng hình lục giác và ngũ giác ; Suy ra ta có mặt. mỗi hình ngũ giác (hình lục giác) có 5 đỉnh (6 đỉnh), và mỗi đỉnh có 3 mặt chung, suy ra ta có đỉnh. Tương tự, mỗi ngũ giác (lục giác) có 5 cạnh (6 cạnh), và mỗi cạnh có 2 mặt chung, suy ra ta có cạnh. Vì thế Đặc trưng Euler là . Bởi vì quả cầu có đặc trưng Euler 2, nen ta có . Kết quả là luôn luôn cần 12 ngũ giác trên một quả bóng đá, số lượng hình lục giác về nguyên tắc không bị giới hạn (nhưng đối với một quả bóng đá thực sự rõ ràng là một lựa chọn một số để làm cho bóng càng tròn càng tốt). Kết quả này cũng được áp dụng cho fullerenes.
Khái quát hóa
Với mỗi tổ hợp ô phức, nó định nghĩa đặc trưng Euler là số ô-0, trừ đi số ô-1, cộng với số lượng ô-2,..., nếu tổng xen kẽ này là hữu hạn. Cụ thể là, các đặc trưng Euler của một tập hợp hữu hạn chỉ đơn giản là số lượng của nó, và các đặc trưng Euler của một đồ thị là số lượng các đỉnh trừ đi số của các cạnh.[7]
Tổng quát hơn, nó có thể định nghĩa đặc trưng Euler của bất kỳ chuỗi phức là tổng luân phiên các bậc của các nhóm tương đồng của các chuỗi phức.
1 phiên bản được sử dụng trong hình hoc đại số là như sau. với bất kì bó trên lược đồ chiếu xuống X, định nghĩa đặc trưng Euler của nó
Một khái quát khác về khái niệm Đặc trưng Euler trên đa tạp xuất phát từ quỹ đạo đa tạp. Trong khi mỗi ống có một số đặc trưng Euler nguyên, một quỹ đạo đa tạp có thể có một đặc trưng Euler phân đoạn. Ví dụ, giọt nước mắt quỹ đạo đa tạp có đặc trưng Euler 1 + 1/p, với p là một số nguyên tố tương ứng với các góc hình nón 2π / p.
Khái niệm Đặc trưng Euler của một tập hợp sắp thứ tự một phần (poset) hữu hạn bị chặn là một sự tổng quát, quan trọng trong tổ hợp. Một poset được "bao bọc" nếu nó có các phần tử nhỏ nhất và lớn nhất, gọi chúng là 0 và 1. Đặc trưng Euler của một poset như thế được định nghĩa là số nguyên μ(0,1), trong đó μ là hàm Mobius về tỷ lệ đại số đó là poset.
Điều này có thể được tiếp tục tổng quát bằng cách định nghĩa một Q-giá trị đặc trưng Euler cho các loại() hữu hạn nhất định, một khái niệm tương thích với của đồ thị của các đặc trưng Euler, quỹ đạo đa tạp và posets đề cập ở trên. Trong hoàn cảnh này, các đặc trưng Euler của một nhóm hữu hạn hoặc nửa nhómG là 1/|G|, và các đặc trưng Euler của một phỏng nhóm(groupoid) hữu hạn là tổng của 1/|Gi|, nơi mà chúng tôi đã chọn một nhóm đại diện Gi cho mỗi thành phần liên thông của phỏng nhóm.[8]
^Olaf Post calls this a "well-known formula": Post, Olaf (2009), “Spectral analysis of metric graphs and related spaces”, Limits of graphs in group theory and computer science, Lausanne, Switzerland: EPFL Press, tr. 109–140, arXiv:0712.1507.
Vincent ParonnaudVincent Paronnaud (2019)Lahir1970 (umur 52–53)La Rochelle, PrancisKebangsaanPrancisPekerjaanArtis komik, pembuat film Vincent Paronnaud (kelahiran 1970), alias Winshluss, adalah seorang artis komik dan pembuat film Prancis. Paronnaud lahir di La Rochelle. Karya-karyanya meliputi: Super negra (1999), Monsieur Ferraille (2001), Pat Boon (2001), Welcome to the Death Club (2002), Smart monkey (2002), Cornélius ou l'art de la mouscaille et du pinaillage (2007), Pinocch...
Pour les articles homonymes, voir Radichtchev. Musée d'art RadichtchevFaçade du musée.GéographiePays RussieOblast oblast de SaratovGrande ville SaratovCoordonnées 51° 31′ 56″ N, 46° 02′ 07″ EFonctionnementStatut Musée d'artPatrimonialité Objet patrimonial culturel d'importance fédérale (d)HistoireOrigine du nom Alexandre RadichtchevFondation 29 juin 1885IdentifiantsCode postal 410600Site web www.radmuseumart.rumodifier - modifier le code ...
جائزة فلسطين التقديريةمعلومات عامةنوع الجائزة جائزة دولةالبلد دولة فلسطين مقدمة من رئيس دولة فلسطينتعديل - تعديل مصدري - تعديل ويكي بيانات جائزة فلسطين التقديرية وهي الجائزة الأرفع ضمن جوائز دولة فلسطين في الآداب والفنون والعلوم الإنسانية،[1] التي يمنحها رئيس دولة فلس
Deuxième bataille des forts de Taku Les forts de Taku Informations générales Date 24–26 juin 1859 Lieu Forts de Taku, Rivière Hai, Chine Issue Victoire chinoise Belligérants Royaume-Uni Empire français États-Unis Dynastie Qing Commandants James Hope (en) (b) Josiah Tattnall Sengge Rinchen Forces en présence A terre:~1 160En mer:11 canonnières4 vapeurs[1] 4 00060 pièce d'artillerie[2] 6 forts[2] Pertes Britanniques :3 canonnières coulées3 canonnières ho...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. Gereja Kristen Jawa (GKJ) Purbalingga adalah Gereja Protestan yang berada di Kabupaten Purbalingga, Jawa Tengah yang tergabung dengan Klasis Banyumas Utara dan Sinode Gereja-Gereja Kristen Jawa di Salatiga. Awal mula Pekabaran Injil di wilayah Banyumas d...
Arnoldo FoàArnoldo Foà pada Maret 2008LahirArnoldo Eugenio Foà(1916-01-24)24 Januari 1916Ferrara, ItaliaMeninggal11 Januari 2014(2014-01-11) (umur 97)Roma, ItaliaPekerjaanPemeran, sutradara, pengisi suara, penyanyi, penulisTahun aktif1935–2014 Arnoldo Foà (24 Januari 1916 – 11 Januari 2014) adalah seorang pemeran, pengisi suara, pengarah teater, penyanyi dan penulis asal Italia.[1] Ia tampil dalam lebih dari 130 film antara 1938 dan 2014. Filmografi pil...
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يوليو 2018) فرضية فايتون هو كوكب افتراضي نظري بواسطة قانون بود لادخا...
For other uses, see Tarragona. Tarragona DOPWine regionTarragona DOP in the province of Tarragona in the region of CataloniaOfficial nameD.O.P. Tarragona[1]TypeDenominación de Origen Protegida (DOP)Year established1945CountrySpainNo. of vineyards4,874 hectares (12,044 acres)No. of wineries32[2]Wine produced13,200 hectolitresCommentsData for 2016 / 2017 Tarragona DO in Catalonia Tarragona is a Spanish Denominación de Origen Protegida (DOP) (Denominació d'Origen Protegida in ...
Supreme Court of the United States38°53′26″N 77°00′16″W / 38.89056°N 77.00444°W / 38.89056; -77.00444EstablishedMarch 4, 1789; 234 years ago (1789-03-04)LocationWashington, D.C.Coordinates38°53′26″N 77°00′16″W / 38.89056°N 77.00444°W / 38.89056; -77.00444Composition methodPresidential nomination with Senate confirmationAuthorized byConstitution of the United States, Art. III, § 1Judge term lengthli...
Species of bird Spot-tailed antwren Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Family: Thamnophilidae Genus: Herpsilochmus Species: H. sticturus Binomial name Herpsilochmus sticturusSalvin, 1885 The spot-tailed antwren (Herpsilochmus sticturus) is a species of bird in the family Thamnophilidae. It is found in Brazil, Colombia, French Guiana, Guyana, Suriname, ...
American boxer (c. 1930–1970) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sonny Liston – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) Sonny ListonListon in 1968BornCharles L. Listonc. 1930, exact date unknownSand Slough, Arkansas,...
Private university in Metro Manila, Philippines Not to be confused with University of the Philippines. National UniversityPamantasang PambansaFormer namesColegio Filipino (1900‑1905)Colegio Mercantil (1905‑1916)National Academy (1916‑1921)MottoEducation that worksTypePrivate nonsectarian Coeducational higher education institutionEstablishedAugust 1, 1900FounderMariano Fortunato Jhocson, Sr.Academic affiliationsPACUCOAPACUASAIHLIAUChairmanHans Sy, Sr.PresidentDr. Renato Ca...
This article is about the Korean novel. For the Chinese novel series by Jiang Nan, see Dragon Raja (Chinese novels). Dragon Raja AuthorLee YeongdoOriginal title드래곤 라자 (Korean)Cover artistPaperback - Jung Bohwan; hardcover - Lee Su-yeon, Kim Hyeong-gyunCountrySouth KoreaLanguageKoreanSeriesLee Yeongdo's Dragon RajaGenreFantasy novelPublished 1998 (Golden Bough) (paperback) 2008 (Golden Bough) (hardcover) Media typePrint (Paperback; hardcover)ISBN89-8273-052-4 (Paperbac...
Bagian dari seri artikel mengenaiRelativitas umum G μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }} PengantarSejarah Rumus matematis SumberUji coba Prinsip dasar Teori relativitas Kerangka acuan Kerangka acuan inersia Prinsip ekuivalensi Ekuivalensi massa–energi Relativitas khusus Garis dunia Geometri Riemann Fenomena Masalah Kepler Gravitasi Medan gravitasi Lensa gravi...
Микитче Знак заказника Микитче напівзатопленою дорогою з Журжевичів в ХочиноЗнак заказника Микитче напівзатопленою дорогою з Журжевичів в ХочиноКраїна УкраїнаРозташування Україна,Житомирська область, Олевський районПлоща 3298,8Засновано 2001Оператор ДП «Олевське ЛГ...
Industrial city in Tamil Nadu, India City in Tamil Nadu, IndiaHosurCitySkyline view of Hosur cityNicknames: Little England, Flower city, Industrial cityHosurHosur (Tamil Nadu)Show map of Tamil NaduHosurHosur (India)Show map of IndiaCoordinates: 12°44′27″N 77°49′31″E / 12.740900°N 77.825300°E / 12.740900; 77.825300Country IndiaState Tamil NaduDistrictKrishnagiriGovernment • TypeMayor–Council • BodyHosur City Municipal Corp...
Disused railway station in North Yorkshire, England North GrimstonThe former station at North GrimstonGeneral informationLocationNorth Grimston, North YorkshireEnglandCoordinates54°05′52″N 0°43′04″W / 54.097908°N 0.717774°W / 54.097908; -0.717774Grid referenceSE839676Platforms1Other informationStatusDisusedHistoryOriginal companyMalton and Driffield RailwayPre-groupingNorth Eastern RailwayPost-groupingLondon and North Eastern RailwayKey dates1853Opened1950C...