Số lượng các hàm tự nghịch đảo, bao gồm cả hàm đồng nhất, trên một tập hợp có n = 0, 1, 2,... phần tử được tính bằng quan hệ lặp lại do Heinrich August Rothe tìm ra năm 1800:
a0 = a1 = 1;
an = an − 1 + (n − 1)an − 2, với n > 1.
Các con số đầu tiên của dãy này là 1, 1, 2, 4, 10, 26, 76, 232 (dãy số A000085 trong bảng OEIS); những con số này được gọi là những số điện thoại, Và chúng là tổng số đếm số tableaux trẻ với một số ô n nhất định.[2]Hàm hợpg ∘ f của hai hàm tự nghịch đảo f và g cũng là hàm nghịch đảo khi và chỉ khi chúng là giao hoán: g ∘ f = f ∘ g.[3]
Bất kỳ hàm tự nghịch đảo nào của một tập hợp có số lẻ phần tử đều có ít nhất một điểm cố định. Tổng quát hóa, với một hàm tự nghịch đảo trên một tập hợp các phần tử hữu hạn, số lượng các phần tử và số điểm cố định có cùng tính chẵn lẻ.[4]
Ell, Todd A.; Sangwine, Stephen J. (2007). “Quaternion involutions and anti-involutions”. Computers & Mathematics with Applications. 53 (1): 137–143. doi:10.1016/j.camwa.2006.10.029.