Нехай є гладким многовидом із афінною зв'язністю . Для дотичного простору у точці для кожного існує однозначно визначена геодезична крива, задана на якомусь проміжку (-t,t), тобто на цьому проміжку і . Ці геодезичні лінії задають експоненційне відображення на відкритій підмножині :
заданий як . Нехай є нормальним околом точки , тобто околом для якого експоненційне відображення є дифеоморфізмом із околу у дотичному просторі на . Тоді відображення
є координатним відображенням, що задає локальну систему координат, які і називаються нормальними координатами.
Оскільки вибір координат на дотичному просторі є довільним, то і нормальні координати в околі точки не є однозначно визначеними. Для ріманових многовидів часто вимагається щоб базові вектори дотичного простору були ортонормальними. Тоді одержані координати також називаються рімановими нормальними координатами.
Властивості
Нехай є нормальними координатами в нормальному околі з центром у точці .
Координатами точки є
Нехай із компонентами у локальних координатах. Тоді геодезична крива із точки у напрямку у нормальних координатах на задається як .
Якщо тензор кручення афінної зв'язності є нульовим то Символи Крістофеля у точці у координатному базисі є рівними нулю, тобто . Ця властивість, зокрема, завжди є справедливою для ріманових многовидів із зв'язністю Леві-Чивіти.
За означенням афінної зв'язності і символів Крістофеля для координатного базиса За означенням тензора кручення і оскільки дужки Лі координатних векторних полів є нульовими і за умовою тензор кручення рівним нулю, то Із попередніх властивостей, крива задана у нормальних координатах як де t є на позиціях i і j а всі решта координати рівні 0, є геодезичною і тому Але усі нормальні координатні лінії, що виходять із є геодезичними, то ж а тому також Звідси і всі символи Крістофеля у точці є рівними нулю.
Для ріманового многовиду із зв'язністю Леві-Чивіти всі часткові похідні елементів метричного тензора у точці є рівними нулю, тобто . У випадку ріманових нормальних координат у точці елементи у є рівними .