AKT був запущений у роботу 22 жовтня 2007 року з приймачем наукових даних, Міліметровим болометричним масивом камер (MBAC), і завершив свій перший сезон в грудні 2007 року. Свій другий сезон спостережень він почав у червні 2008 року.
Дизайн та розташування
АКТ — це зміщений по осі грегоріанський телескоп з 6-метровим первинним дзеркалом і 2-метровим вторинним дзеркалом. Обидва дзеркала сегментовані, складаються з 71 (первинне) і 11 (вторинне) алюмінієвих панелей. На відміну від більшості телескопів, які стежать під час спостереження з небом, що обертається, AKT спостерігає за смугою неба, зазвичай у п'ять градусів шириною, скануючи назад і вперед по азимуту на відносно швидкій швидкості два градуси в секунду. Частина телескопа, що повертається, важить близько 32 тонн, що створює значний інженерний виклик. Наземний екран, що оточує телескоп, мінімізує забруднення мікрохвильовим випромінюванням, яке випромінює земля. Проектування, виготовлення та будівництво телескопа виконано компанією Dynamic Structures з Ванкувера, Британська Колумбія .
Спостереження робляться з розділенням приблизно у кутову хвилину (1/60 градусу) на трьох частотах: 145 ГГц, 215 ГГц і 280 ГГц. Кожну частоту вимірюють масивом площею 3х3 см з 1024 елементів, всього 3072 детекторами. Детектори — це надпровідні датчики перехідного краю, нова технологія, висока чутливість якої повинна дозволяти вимірювання температури КМФВ в межах кількох мільйонних градуса.[2] Система кріогеннихгелієвиххолодильників зберігає температуру детекторів на третину градуса вище абсолютного нуля.
У своєму поточному огляді, АКТ огляне близько двохсот квадратних градусів неба.[3]
Оскільки водяна пара в атмосфері випускає мікрохвильове випромінювання, яке забруднює вимірювання КМФВ, телескоп виграє від його посушливого, висотного місця розташування на високому — але легко доступному — плато Чайнантор в горах Анд в пустелі Атакама. Кілька інших обсерваторій розташовані в цьому регіоні, в тому числі ASTE, NANTEN2, APEX і ALMA .
Вимірювання космічного мікрохвильового фонового випромінювання (КМФВ) експериментами, такими як COBE, BOOMERanG, WMAP, CBI та багато інших, значно розширили наші знання з космології, особливо ранньої еволюції Всесвіту. Очікується, що спостереження КМФВ з більш високою роздільною здатністю не тільки покращать точність поточних знань, але й дозволять нові типи вимірювань. З роздільною здатністю АКТ має бути помітним ефект Сюняєва — Зельдовича, згідно з яким скупчення галактик залишають відбиток на КМФВ. Сила цього методу виявлення полягає в тому, що він є незалежним від червоного зсуву вимірюванням маси скупчень, що означає, що дуже віддалені, стародавні скупчення виявити так само легко, як і ближчі скупчення.
Очікується, що АКТ виявить десь 100 таких кластерів.[3] Разом з подальшими вимірами у видимому і рентгенівському світлі, це дасть уявлення про еволюцію структури Всесвіту з часів Великого вибуху. Серед іншого, це поліпшить наше розуміння природи таємничої темної енергії, яка, здається, є домінуючою складовою Всесвіту.
У січні 2010 року АКТ оприлюднив результати вимірювання статистичних властивостей температури КМФВ до величини кутових хвилин.[4] Він знайшов сигнали, які узгоджувались з невизначеними точковими джерелами та ефектом Сюняєва — Зельдовича. У 2011 році АКТ вперше виявив спектр потужності гравітаційного лінзування мікрохвильового фону[5], який, в поєднанні з результатами WMAP, вперше надав свідчення існування темної енергії лише на основі КМФВ.[6] Пізніше були оприлюднені вимірювання спектру потужності КМФВПівденнополюсним телескопом[7], які також надали свідчення існування темної енергії тільки на основі КМФВ.[8]
↑"Receiver Lab Telescope", 80-см інструмент, розташований вище (5 525 м.н.м.), але він не є постійним, оскільки змонтований на даху рухомого морського контейнера.[1] Нова Атакамська обсерваторія Токійського університету є значно вищою їх обох.
Примітки
↑Marrone та ін. (2005). Observations in the 1.3 and 1.5 THz Atmospheric Windows with the Receiver Lab Telescope. arXiv:astro-ph/0505273.