Purkinje hücreleri derin beyincik çekirdeklerine baskılayıcı (inhibitör) atımlar gönderir ve serebellar kortekste motor koordinasyon için tek bir çıktı sağlar.
Moleküler
Beyincikte bulunan Purkinje katmanında Purkinje hücre gövdeleri ve Bergmann glia bulunur ve fazlaca benzersiz gen ifade edilir.[4] Purkinjeye özgü gen işaretleri de, Purkinje-eksik farelerle vahşi farelerin transkriptomları kıyaslanarak önerilmiştir.[5] Bir örnek nakavt farelerdeki purkinje proteini 4 (PCP4), Purkinje hücrelerinde belirgin olarak sinaptik plastisitede değişkenlik ve lokomotor öğrenmede bozulma gösterirler.[6] PCP4 Purkinje hücrelerinin sitoplazmasında kalsiyum (Ca2+) ile kalmodulin (CaM) hem oluşumunu hem ayrılmasını hızlandırır, olmaması durumunda bu sinir hücrelerinin fizyolojisi bozulur.[7][8]
Gelişimi
Farelerde ve insanlarda kemik iliği hücrelerinin, beyincik Purkinje hücreleri ile ya birleştiğini ya da onları oluşturduğuna dair kanıtlar mevcuttur ve kemik iliği hücrelerinin ister doğrudan oluşturarak, ister birleşerek, merkezi sinir sisteminin hasar görmesi durumunda onarmında rol oynaması mümkündür.[9][10][11][12][13] İleri kanıtlar insan adrenal korteksinde Purkinje nöronlarının, B-lenfositlerin ve aldosteron üreten hücrelerin arasında ortak bir kök hücre atasının varlığını işaret etmektedir.
Fonksiyonu
Purkinje hücreleri iki farklı elektrofizyolojik aktivite formu gösterir:
Basit atımlar 17 – 150 Hz (Raman ve Bean, 1999) aralığında, spontan olarak ya da Purkinje hücreleri paralel fiberler, granül hücrelerinin aksonları tarafından sinaptik olarak uyarıldığında ortaya çıkarlar.
Karmaşık atımlar yavaştır, 1–3 Hz atımlar, başlangıçta uzun süreli ve büyük genlikli bir atımın ardından izlenen yüksek frekanslı küçük genlikli aksiyon potansiyeli patlamalarıyla karakterize olmuştur. Tırmanan liflerin aktive edilmesi sebebiyle bu durum gözlenir ve dendritlerde kalsiyum aracılı aksiyon potansiyellerinin oluşunu da içerebilir. Karmaşık atım aktivitesini takip eden basit atımlar güçlü atım girdileri tarafından baskılanabilir.[14]
Purkinje hücreleri hem sodyuma bağlı hem kalsiyuma bağlı spontan tren şeklinde elektrofizyolojik aktivite gösterirler. Bu ilk olarak Rodolfo Llinas (Llinas ve Hess (1977) ve Llinas ve Sugimori (1980)) tarafından gösterilmiştir. Beyincik fonksiyonunda çok önemli rol oynayan P-tipi kalsiyum kanalları Purkinje hücrelerinden sonra, ilk defa burada rastgelindiği için bu ismi almışlardır. Purkinje hücrelerinin tırmanan lifler tarafından aktive edilmesinin, sessiz halden spontan aktivite haline geçişi ya da tersini sağlayarak bir nevi değişim düğmesi gibi davrandığını biliyoruz.[16] Bu bulgular, tırmanan lif girdilerinin özellikle anestezi halindeki hayvanlarda görüldüğü ve uyanık haldeki hayvanlarda Purkinje hücrelerinin genelde, neredeyse her zaman süregelen bir biçimde olduğu fikriyle tartışılmıştır.[17] Fakat bu son çalışmanın kendisi de tartışmalı duruma gelmiştir[18] ve Purkinje hücrelerinin değiştirme özelliği uyanık kedilerde gözlemlenmiştir.[19] Purkinje hücrelerine ait bir hesaplamalı model, hücre içi kalsiyum hesaplamasının bu değiştirme özelliğine sebep olduğunu göstermiştir.[20]
Bulgular Purkinje hücre dendritlerinin endokanabinoit salgıladığı ve bunun hem uyarıcı hem de baskılayıcı sinapsların baskılayabileceğini önermiştir.[21] Purkinje hücrelerinin iç aktivite modu sodyum-potasyum pompası ile ayarlanır ve kontrol edilir.[22] Bu da pompanın basitçe homeostatik, iyonik eğimlerde "bakıcı" molekül olmayabileceğini, bunun yerine beyinde ve beyincikte hesaplama unsuru olabileceğini gösterir.[23] Nitekim, Na+-K+ pompasında meydana gelen bir mutasyon hızlı başlangıçlı distoni parkinsonuna sebebiyet verir; semptomları beyincik hesaplamasında bir patoloji olduğunu gösterir.[24]
Ayrıca, canlı farelerde Na+-K+ pompalarını bloke etme amacıyla kullanılan ouabain zehri ataksi ve distoniyi tetikler.[25] Deneysel verilerin sayısal modellemenmesinde in vivo olarak Na+-K+ pompasının uzun suskun duraklamalar (>>1> s) ürettiğini gösterir; bunun da hesaplamasal bir rolü olabilir.[20]Alkol beyincikte Na+-K+ pompasını engeller ve beyinciksel hesaplamanın ve vücut koordinasyonunun bozulmasını da muhtemelen bu şekilde olmaktadır.[26][27]
Klinik önemi
İnsanlarda Purkinje hücreleri çeşitli sebeplerden hasar görebilir: toksik maruziyet, örneğin alkol ya da lityum; otoimmün hastalıklar; spinoserebellar ataksilere sebep olan genetik mutasyonlar, Unverricht-Retezova hastalığı ya da otizm; ve genetik temeli bilinmeyen nörodejeneratif hastalıklar, örneğin serebellar tip çoklu sistem atrofisi ya da düzensiz ataksiler.
Bazı evcil hayvanlar serebelar abiotrofi ismi verilen, doğumdan kısa bir süre sonra Purkinje hücrelerinin atrofiye başladığı bir durum geliştirebilir. Ataksi, niyet titremesi, hiperaktivite, tehdit refleksinde azalma, sert ya da yüksek adımlı yürüyüş, ayak pozisyonunun farkındalığında azalma (bazen çarpık yürüyüş ya da duruş) ve uzaklığı ve boyutu algılayamama gibi semptomlara sebep olabilir.[28]Serebellar hipoplazi olarak bilinen benzer bir durum da doğumdan önce uteroda Purkinje hücrelerinin gelişememesi sebebiyle oluşur.
Ataksi telenjiektazi ve Niemann Pick hastalığı tip C gibi genetik durumlar ve beyincik temel titremesi, Purkinje hücrelerinin giderek kaybolmasına sebebiyet verir. Alzheimer hastalığında bazen spinal patoloji ve Purkinje hücre dendritlerinin kaybı görülür.[29] Purkinje hücreleri ayrıca kuduz virüsü sebebiyle de zarar görebilir, zira virüs enfeksiyon bölgesinden merkezi sinir sistemine geçer.[30]
^Tyrrell, T; Willshaw, D (29 Mayıs 1992). "Cerebellar cortex: its simulation and the relevance of Marr's theory". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 336 (1277). ss. 239-57. doi:10.1098/rstb.1992.0059. PMID1353267.
^Wadiche, JI; Jahr, CE (25 Ekim 2001). "Multivesicular release at climbing fiber-Purkinje cell synapses". Neuron. 32 (2). ss. 301-13. doi:10.1016/S0896-6273(01)00488-3. PMID11683999.
^Kirsch, L; Liscovitch, N; Chechik, G (Aralık 2012). Ohler, Uwe (Ed.). "Localizing Genes to Cerebellar Layers by Classifying ISH Images". PLoS Computational Biology. 8 (12). ss. e1002790. doi:10.1371/journal.pcbi.1002790. PMC3527225 $2. PMID23284274.
^Rong, Y; Wang T; Morgan J (2004). "Identification of candidate purkinje cell-specific markers by gene expression profiling in wild-type and pcd3j mice". Molecular Brain Research. 13 (2). ss. 128-145. doi:10.1016/j.molbrainres.2004.10.015.
^Wei P, Blundon JA, Rong Y, Zakharenko SS, Morgan JI (2011). "Impaired locomotor learning and altered cerebellar synaptic plasticity in pep-19/PCP4-null mice". Mol. Cell. Biol. 31 (14). ss. 2838-44. doi:10.1128/MCB.05208-11. PMC3133400 $2. PMID21576365.
^Putkey JA, Kleerekoper Q, Gaertner TR, Waxham MN (2004). "A new role for IQ motif proteins in regulating calmodulin function". J. Biol. Chem. 278 (50). ss. 49667-70. doi:10.1074/jbc.C300372200. PMID14551202.
^Kleerekoper QK, Putkey JA (2009). "PEP-19, an intrinsically disordered regulator of calmodulin signaling". J. Biol. Chem. 284 (12). ss. 7455-64. doi:10.1074/jbc.M808067200. PMC2658041 $2. PMID19106096.
^Eric R. Kandel, James H. Schwartz, Thomas M. Jessell (2000). Principles of Neural Science. 4/e. McGraw-Hill. pp.837-40.
^Felizola SJ, Nakamura Y, Ono Y, Kitamura K, Kikuchi K, Onodera Y, Ise K, Takase K, Sugawara A, Hattangady N, Rainey WE, Satoh F, Sasano H (Apr 2014). "PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues". Journal of Molecular Endocrinology. 52 (2). ss. 159-167. doi:10.1530/JME-13-0248. PMC4103644 $2. PMID24403568.
^Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, ve diğerleri. (2005). "Bistability of cerebellar Purkinje cells modulated by sensory stimulation". Nature Neuroscience. Cilt 8. ss. 202-211. doi:10.1038/nn1393.
^Schonewille M, Khosrovani S, Winkelman BH, Hoebeek FE, DeJeu MT, Larsen IM, ve diğerleri. (2006). "Purkinje cells in awake behaving animals operate at the up state membrane potential". Nature Neuroscience. Cilt 9. ss. 459-461. doi:10.1038/nn0406-459.
^Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, ve diğerleri. (2006). "Purkinje cells in awake behaving animals operate at the up state membrane potential–Reply". Nature Neuroscience. Cilt 9. s. 461. doi:10.1038/nn0406-461.
^Yartsev MM, Givon-Mayo R, Maller M, Donchin O (2009). "Pausing Purkinje cells in the cerebellum of the awake cat". Frontiers in Systems Neuroscience. Cilt 3. s. 2. doi:10.3389/neuro.06.002.2009.
^For references, see the extensive references and bibliography at the article on Cerebellar abiotrophy, linked at the beginning of this paragraph.
^Mavroudis I.A.; Fotiou, DF; Adipepe, LF; Manani, MG; Njau, SD; Psaroulis, D; Costa, VG; Baloyannis, SJ (Kasım 2010). "Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer's disease". American Journal of Alzheimer's Disease & Other Dementias. 25 (7). ss. 585-91. doi:10.1177/1533317510382892. PMID20870670.
"Voltage-dependent calcium conductances in mammalian neurons. The P channel". Ann. N. Y. Acad. Sci. 560 (1 Calcium Chann). 1989. ss. 103-11. doi:10.1111/j.1749-6632.1989.tb24084.x. PMID2545128.
Forrest, Michael (Ekim 2014). Biophysics and computations of the cerebellar Purkinje neuron. CreateSpace. ISBN978-1502454546.