Cabbibo-Kobayashi-Maskawa matrisi ya da kısaca CKM matrisi veya diğer adıyla kuark karışım matrisi, kısaca KM matrisi,parçacık fiziğininStandart Model'inde, çeşni değiştiren zayıf bozunumların güç bilgisini içeren bir üniter matristir. Teknik olarak, kuarkların serbest halde ilerlerken ve zayıf etkileşimlerde rol alırlarkenki kuantum durumlarının uyumsuzluğunu belirtir. CP ihlalinin anlaşılmasında önemli yer tutar. Bu matris Makoto Kobayashi ve Toshihide Maskawa tarafından kuarkların üç ailesi için önerilmiş, matrise diğer bir ailenin eklenmesi fikri ise Nicola Cabibbo tarafından sunulmuştur. Bu matris ayrıca şu anki üç kuark ailesinin ikisini içeren GIM mekanizmasının bir uzantısıdır.
Şu anki bilgiler ışığında (kuarklar henüz kuramlaştırılmadı) Cabibbo açısı; aşağı (d) ve garip kuarkların (s), yukarı kuarklara (u) bozunmalarının göreli olasılıklarına (|Vud|2 ve |Vus|2) ilişkilendirilir. Parçacık fiziği dilince, yukarı kuarka yüklü-akım zayıf etkileşim vasıtasıyla çiftlenen nesne aşağı-tip kuarkların bir süperpozisyonudur.[4] Matematiksel olarak:
veya Cabibbo açısını kullanarak:
|Vud| ve |Vus| için şu an kabul edilen değerleri kullanarak, Cabibbo açısı şu şekilde hesaplanabilir
Tılsım kuark (c) 1974 yılında keşfedildiğinde, iki eşitlik setine yol göstererek aşağı ve garip kuarkların yukarı ve tılsım kuarklara bozunabildiği fark edildi:
veya Cabibbo açısını kullanarak:
Ayrıca matris gösterimi kullanarak şu şekilde de yazılabilir:
veya yine Cabibbo açısını kullanarak:
burada |Vij|2 değerleri j çeşni kuarkının i çeşni kuarkına bozunma olasılığını temsil eder. Bu 2 × 2 dönme matrisi Cabibbo matrisi olarak adlandırılır.
Kobayashi ve Maskawa, bir dört-kuark modelinde yük-parite ihlalinin açıklanamadığını gözlemleyerek kuarkların üç ailesinin zaıyf bozunmalarını takip edebilmek için Cabibbo matrisini, Cabibbo-Kobayashi-Maskawa matrisine (CKM matrisi) dönüştürdüler:[5]
Solda yukarı-tipi kuarkların zayıf etkileşim ikili eşleri ve sağda ise aşağı-tipi kuarkların kütle özdurum vektörü ile CKM matrisi bulunmaktadır. CKM matrisi kuark i'den kuark j'ye geçiş olasılığını açıklar. Bu geçişler |Vij|2 ile orantılıdır.
Şu anda, CKM matris elemanlarının en iyi belirlenebilmiş genlikleri:[6]
Tanımdaki aşağı-yukarı tipi kuarkların kullanım tercihinin tamamen rastgele olduğuna ve yukarı-tipi aşağı-tipi kuarkların arasındaki derin bir fiziksel asimetriyi temsil etmediğine dikkat ediniz. Matrisi yukarı-tip, u',c' ve t', kuarkların kütle özdurumlarının zayıf etkileşim eşlerini u,c ve t cinsinden açıklayarak başka türlü de kolayca tanımlayabiliriz. CKM matrisi üniter (karmaşık eşleniğinin devriği tersine eşit) olduğu için aslında aynı matrisi elde ederiz.
^Beringer, J.; Arguin, J. -F.; Barnett, R. M.; Copic, K.; Dahl, O.; Groom, D. E.; Lin, C. -J.; Lys, J.; Murayama, H.; Wohl, C. G.; Yao, W. -M.; Zyla, P. A.; Amsler, C.; Antonelli, M.; Asner, D. M.; Baer, H.; Band, H. R.; Basaglia, T.; Bauer, C. W.; Beatty, J. J.; Belousov, V. I.; Bergren, E.; Bernardi, G.; Bertl, W.; Bethke, S.; Bichsel, H.; Biebel, O.; Blucher, E.; Blusk, S.; Brooijmans, G.; et al. (2012). "Review of Particles Physics: The CKM Quark-Mixing Matrix" 14 Temmuz 2018 tarihinde Wayback Machine sitesinde arşivlendi. (PDF). Physical Review D. 80 (1): 1–1526 [162]. Bibcode:2012PhRvD..86a0001B.doi:10.1103/PhysRevD.86.010001.
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!