เมทริกซ์เอร์มีเชียนเสมือน (อังกฤษ: skew-Hermitian matrix) คือเมทริกซ์จัตุรัสที่มีสมาชิกเป็นจำนวนเชิงซ้อน และเมทริกซ์สลับเปลี่ยนสังยุค (conjugate transpose) ของเมทริกซ์นั้นเท่ากับเมทริกซ์ตัวเดิมที่คูณด้วย −1 นั่นหมายความว่าสมาชิกในแถวที่ i หลักที่ j กับสมาชิกในแถวที่ j หลักที่ i จะต้องเป็นสังยุคที่ติดลบซึ่งกันและกัน ดังนี้
หรือเขียนแทนด้วยการสลับเปลี่ยนสังยุคของเมทริกซ์ จะได้ว่า
ตัวอย่างเช่น เมทริกซ์ต่อไปนี้เป็นเมทริกซ์เอร์มีเชียนเสมือน
สมาชิกที่อยู่บนเส้นทแยงมุมหลักของเมทริกซ์เอร์มีเชียนจะต้องเป็นจำนวนจินตภาพเสมอ เนื่องจากสังยุคของจำนวนจินตภาพที่ติดลบจะได้จำนวนเดิมในตำแหน่งเดิม
ดูเพิ่ม