เซลล์เชื้อเพลิง

Toyota FCEV ใช้เซลล์เชื้อเพลิง
ภาพแสดงเซลล์เชื้อเพลิงแบบทำงานด้วยโปรตอน (อังกฤษ: proton-conducting fuel cell)

เซลล์เชื้อเพลิง (อังกฤษ: fuel cell) เป็นเซลล์ไฟฟ้าเคมีที่เปลี่ยนพลังงานเคมีจากเชื้อเพลิงชนิดหนึ่งให้เป็นกระแสไฟฟ้าผ่านทางปฏิกิริยาเคมีของไอออนของไฮโดรเจนประจุบวกกับออกซิเจนหรือตัวทำออกซิเดชันอื่น[1] เซลล์เชื้อเพลิงแตกต่างจากแบตเตอรี่ที่ว่ามันต้องการแหล่งจ่ายเชื้อเพลิงและออกซิเจนหรืออากาศอย่างต่อเนื่องเพื่อความยั่งยืนของปฏิกิริยาเคมี ในขณะที่ในแบตเตอรี่สารเคมีภายในจะทำปฏิกิริยาต่อกันเพื่อผลิตแรงเคลื่อนไฟฟ้า (emf) เซลล์เชื้อเพลิงสามารถผลิตไฟฟ้าได้อย่างต่อเนื่องนานเท่าที่เชื้อเพลิงและออกซิเจนหรืออากาศยังคงถูกใส่เข้าไป ไม่เหมือนกับแบตเตอรี่ที่จะหยุดจ่ายกระแสไฟฟ้าถ้าสารเคมีหมดอายุการใช้งาน

เซลล์เชื้อเพลิงถูกคิดค้นครั้งแรกในปี ค.ศ. 1838 เซลล์เชื้อเพลิงเชิงพาณิชย์ครั้งแรกถูกใช้มากว่าหนึ่งศตวรรษต่อมาในโครงการอวกาศของนาซ่า ที่จะผลิตพลังงานให้กับดาวเทียมและแคปซูลอวกาศ ตั้งแต่นั้นเป็นต้นมาเซลล์เชื้อเพลิงถูกนำมาใช้ในงานที่หลากหลายอื่น ๆ เซลล์เชื้อเพลิงถูกใช้สำหรับพลังงานหลักและพลังงานสำรองเพื่อการพาณิชย์ อุตสาหกรรมและอาคารที่อยู่อาศัยและในพื้นที่ห่างไกลและไม่สามารถเข้าถึงได้ พวกมันยังถูกใช้เพื่อให้พลังงานกับยานพาหนะเซลล์เชื้อเพลิง รวมทั้งรถยก, รถยนต์, รถโดยสาร, เรือ, รถจักรยานยนต์และเรือดำน้ำ

เซลล์เชื้อเพลิงมีอยู่หลายชนิด ทุกชนิดประกอบด้วยแอโนด แคโทดและอิเล็กโทรไลต์ อิเล็กโทรไลต์จะยอมให้ไอออนไฮโดรเจนประจุบวก (หรือโปรตอน) สามารถเคลื่อนที่ได้จากแอโนดไปแคโทดของเซลล์เชื้อเพลิง แอโนดและแคโทดประกอบด้วยตัวเร่งปฏิกิริยาที่ทำให้เชื้อเพลิงเกิดปฏิกิริยาออกซิเดชั่นที่สร้างไอออนไฮโดรเจนประจุบวกและอิเล็กตรอน ไอออนไฮโดรเจนจะถูกดึงผ่านอิเล็กโทรไลต์หลังจากการเกิดปฏิกิริยาและเคลื่อนที่ไปยังแคโทด ในขณะเดียวกันอิเล็กตรอนที่เหลือจากอะตอมของไฮโดรเจนจะถูกดึงจากแอโนดไปยังแคโทดผ่านวงจรภายนอก ทำให้เกิดกระแสตรงที่แคโทดไอออนไฮโดรเจน อิเล็กตรอนและออกซิเจนทำปฏิกิริยากันก่อตัวเป็นน้ำ เนื่องจากความแตกต่างหลักระหว่างเซลล์เชื้อเพลิงในแต่ละประเภทคืออิเล็กโทรไลต์ เซลล์เชื้อเพลิงจึงถูกแยกประเภทตามชนิดของอิเล็กโทรไลต์ที่พวกมันใช้ และแยกตามระยะเวลาเริ่มต้นตั้งแต่ 1 วินาทีสำหรับเซลล์เชื้อเพลิงเยื่อหุ้มแลกเปลี่ยนโปรตอน (อังกฤษ: proton exchange membrane fuel cell (PEMFC)) จนถึง 10 นาทีสำหรับเซลล์เชื้อเพลิงออกไซด์แข็ง (อังกฤษ: solid oxide fuel cell (SOFC)) เซลล์เชื้อเพลิงเดี่ยว ๆ จะผลิตกระแสไฟฟ้าที่มีแรงดันขนาดค่อนข้างเล็ก ประมาณ 0.7 โวลต์ ดังนั้นเซลล์จึงต้องวาง "ซ้อน" กัน หรือถูกวางเรียงกันเป็นแถว เพื่อที่จะสร้างแรงดันเพียงพอที่จะตอบสนองความต้องการของการใช้งาน[2] นอกเหนือไปจากกระแสไฟฟ้า เซลล์เชื้อเพลิงยังผลิตน้ำ ความร้อนและ(ขึ้นอยู่กับแหล่งเชื้อเพลิง)ปริมาณขนาดเล็กมากของก๊าซไนโตรเจนไดออกไซด์ และก๊าซอื่นๆ ประสิทธิภาพการใช้พลังงานของเซลล์เชื้อเพลิงโดยทั่วไปจะอยู่ระหว่าง 40-60% หรือสูงขึ้นถึง 85% ในการผลิตแบบความร้อนร่วม (อังกฤษ: cogeneration) ถ้าความร้อนที่เหลือทิ้งถูกนำกลับมาใช้งานอีก

ตลาดของเซลล์เชื้อเพลิงกำลังเจริญเติบโตและบริษัท Pike Research ได้ประมาณการว่าตลาดเซลล์เชื้อเพลิงอยู่กับที่จะสูงถึง 50 GW ในปี 2020[3]

สารตั้งต้นที่ใช้โดยทั่วไปในเซลล์เชื้อเพลิงได้แก่ ก๊าซไฮโดรเจนที่ด้านแอโนด และก๊าซออกซิเจนที่ด้านแคโทด (เซลล์ไฮโดรเจน) โดยปกติแล้วเมื่อมีสารตั้งต้นไหลเข้าสู่ระบบ สารผลิตภัณฑ์ที่เกิดขึ้นก็จะไหลออกจะระบบไปด้วย ดังนั้นการทำงานของเซลล์เชื้อเพลิงจึงดำเนินต่อไปได้เรื่อยๆ ตราบเท่าที่เราสามารถควบคุมการไหลได้

เซลล์เชื้อเพลิงมักจะถูกมองว่าเป็นตัวเลือกที่ดีสำหรับการใช้พลังงานที่มีประสิทธิภาพสูงและปราศจากมลพิษ เมื่อเปรียบเทียบกับเชื้อเพลิง เช่น มีเทนและก๊าซธรรมชาติ ซึ่งทำให้เกิดคาร์บอนไดออกไซด์ ผลิตภัณฑ์อย่างเดียวที่เกิดจากการทำงานของเซลล์เชื้อเพลิงคือน้ำ อย่างไรก็ตามยังมีความกังวลอยู่ในขั้นตอนการผลิตก๊าซไฮโดรเจนซึ่งใช้พลังงานมาก การผลิตไฮโดรเจนจำเป็นต้องใช้วัตถุดิบที่มีไฮโดรเจน เช่น น้ำ หรือ เชื้อเพลิงอื่นๆ นอกจากนั้นยังต้องใช้ไฟฟ้าซึ่งก็ก็ผลิตมาจากแหล่งพลังงานแบบดั้งเดิม ได้แก่ น้ำมัน ถ่านหิน หรือแม้แต่พลังงานนิวเคลียร์ ในขณะที่พลังงานทางเลือกเช่น ลมและพลังงานแสงอาทิตย์ ก็อาจสามารถใช้ได้ แต่ราคาก็ยังสูงมากในปัจจุบัน ดังนั้นเราจึงยังไม่อาจกล่าวได้ว่าเทคโนโลยีเซลล์เชื้อเพลิงเป็นอิสระจากเชื้อเพลิงซากดึกดำบรรพ์ จนกว่าเราจะสามารถหาวิธีการผลิตไฮโดรเจนปริมาณมากด้วยพลังงานทดแทนหรือพลังงานนิวเคลียร์


เทคโนโลยี

เซลล์เชื้อเพลิงเมทานอลโดยตรง

ประสิทธิภาพของเซลล์เชื้อเพลิงไม่ได้ถูกจำกัดด้วยประสิทธิภาพในระบบของวัฏจักรการ์โนต์ ซึ่งใช้กับระบบเครื่องยนต์ที่มีการสันดาป เนื่องจากเซลล์เชื้อเพลิงไม่ได้มีการทำงานเป็นวัฏจักรที่เปลี่ยนแปลงอุณหภูมิ ดังนั้นเซลล์เชื้อเพลิงจึงสามารถมีประสิทธิภาพการเปลี่ยนแปลงพลังงานเคมีเป็นพลังงานไฟฟ้าที่สูงมากได้

ในตัวอย่างง่ายๆ ของเซลล์เชื้อเพลิงแบบ hydrogen/oxygen proton-exchange membrane หรือ polymer electrolyte (PEMFC) พอลิเมอร์ที่ให้โปรตอนผ่านได้จะแยกฝั่งแอโนดและแคโทดออกจากกัน แต่ละด้านจะมีขั้วไฟฟ้าของตัวเอง ส่วนใหญ่แล้วจะเป็นแผ่นคาร์บอนเคลือบด้วยตัวเร่งปฏิกิริยาแพลทินัม

ในด้านของแอโนด ไฮโดรเจนจะแพร่เข้าสู่ตัวเร่งปฏิกิริยาด้านแอโนด ทำให้มันแตกตัวออกเป็นโปรตอนและอิเล็กตรอน โปรตอนจะวิ่งผ่านเยื่อกั้นไปที่แคโทด ในขณะที่อิเล็กตรอนจะถูกบังคับให้วิ่งเข้าสู่วงจรไฟฟ้าภายนอก (ให้พลังงานออกมา) เพราะว่าเยื่อกั้นนั้นไม่ให้กระแสไฟฟ้าไหลผ่านได้

ในด้านของตัวเร่งปฏิกิริยาที่แคโทด โมเลกุลของออกซิเจนจะทำปฏิกิริยากับอิเล็กตรอน ซึ่งวิ่งมาจากแอโนดผ่านวงจรภายนอก และมาพบกับออกซิเจนและโปรตอนที่ด้านนี้กลายเป็นน้ำ

ในตัวอย่างนี้ของเสียที่เกิดขึ้นคือไอน้ำหรือน้ำที่เป็นของเหลวเท่านั้น แม้ในสภาวะเยือกแข็งน้ำก็ต้องถูกกำจัดออกจากระบบ ประสิทธิภาพและอัตราการเกิดปฏิกิริยาจะลดลงอย่างมากเมื่ออุณหภูมิต่ำลง นอกจากนี้ปัญหาอีกอย่างหนึ่งได้แก่ปัญหาความทนทานต่อ CO ของแอโนดซึ่งค่อนข้างจำกัด

เซลล์เชื้อเพลิงไม่สามารถเก็บพลังงานได้เหมือนกับแบตเตอรี่ แต่ในบางสถานการณ์ เช่นเดียวกับ โรงไฟฟ้าที่ขึ้นอยู่กับแหล่งพลังงานที่ไม่ต่อเนื่อง (แสงอาทิตย์ ลม) มันสามารถทำงานร่วมกับ electrolyzer และระบบเก็บสะสมพลังงานเพื่อเก็บพลังงานไว้ได้ ประสิทธิภาพโดยรวมจากไฟฟ้าเป็นไฮโดรเจนและกลับมาสู่ไฟฟ้าอีกสำหรับโรงไฟฟ้าแบบนี้อยู่ที่ 30-40%

นอกจากไฮโดรเจนบริสุทธิ์ นักวิจัยยังได้ใช้เชื้อเพลิงที่มีไฮโดรเจนประเภทอื่น เช่น ดีเซลล์ เมทานอล และสารเคมีที่เก็บไฮโดรเจนได้ ได้แก่โลหะบางชนิด

ประสิทธิภาพ

เซลล์เชื้อเพลิงโดยทั่วไปสามารถเปลี่ยนพลังงานเคมีเป็นพลังงานไฟฟ้าได้ถึงราว 50% ประสิทธิภาพนี้ขึ้นอยู่กับกระแสที่ไหลผ่านเซลล์ ยิ่งกระแสถูกดึงไปมากประสิทธิภาพก็ลดลงมาก

เราจำเป็นต้องนำการสูญเสียที่เกิดขึ้นระหว่างกระบวนการผลิต ขนส่งและจัดเก็บมาพิจารณาด้วย รถที่ขับเคลื่อนด้วยเซลล์เชื้อเพลิงที่ใช้ไฮโดรเจอัดอาจมีประสิทธิภาพจากแหล่งพลังงานไปสู่การขับเคลื่อนอยู่ที่ 22% ถ้าไฮโดรเจนถูกเก็บอยู่ในรูปก๊าซความดันสูง และ 17%ถ้าไฮโดรเจนถูกเก็บอยู่ในรูปก๊าซเหลว

รูปแบบการใช้งานอีกอย่างหนึ่งในประเทศที่อากาศหนาวเย็น คือ การใช้เซลล์เชื้อเพลิงให้พลังงานไฟฟ้าและความร้อนไปพร้อมกัน ในระบบนี้ประสิทธิภาพการเปลี่ยนพลังงานเคมีเป็นพลังงานไฟฟ้าไม่จำเป็นต้องสูงมากนัก ปกติแล้วอยู่ที่ 15-20% เนื่องจากความร้อนก็สามารถนำไปใช้ประโยชน์ได้ ความร้อนบางส่วนสูญเสียไปกับก๊าซที่ปล่อยออกจากระบบเช่นเดียวกับระบบที่มีการเผาไหม้ทั่วไป ดังนั้นในระบบนี้ประสิทธิภาพโดยรวมจึงยังไม่ใช่ 100% แต่อยู่ที่ราว 80%

เศรษฐศาสตร์

ในปัจจุบันเซลล์เชื้อเพลิงยังมีราคาสูงมากเมื่อเปรียบเทียบกับเครื่องยนต์เผาไหม้ภายใน ซึ่งค่าใช้จ่ายที่สูงมากนี้มักมีสาเหตุมาจากตัวเร่งปฏิกิริยาแพลทินัม ซึ่งเร็วนี้ก็ได้มีการใช้แผ่นกั้นเซลล์ซึ่งทำหน้าที่เป็นสองขั้ว (bipolar plate) ได้ในแผ่นเดียวทำให้ราคาถูกลงมาได้ในระดับหนึ่ง อย่างไรก็ตามมันยังต้องการเครื่องจักรที่แม่นยำหรือฝีมือการประกอบที่ดี เนื่องจากความต้องการยังมีน้อยทำให้การประกอบเซลล์เชื้อเพลิงส่วนใหญ่ยังต้องใช้แรงงานคน อย่างไรก็ตามมีคนเชื่อว่าความต้องการเซลล์เชื้อเพลิงจะเพิ่มขึ้นและราคาจะถูกลงอย่างมากเนื่องจากการผลิตในปริมาณมาก ในปี 2002 เซลล์โดยทั่วไปใช้ตัวเร่งปฏิกิริยาที่มีราคาสูงถึง 1000 ดอลลาร์ต่อกิโลวัตต์ ซึ่งคาดหมายว่าในปี 2007ราคาจะตกลงมาอยู่ที่เพียง 30 ดอลลาร์ต่อกิโลวัตต์ นอกจากนี้ยังเป็นที่กังวลว่าปริมาณแพลทินัมที่มีอยู่ในปัจจุบันไม่พอเพียง (ความจริงแล้วมีเพียงหนึ่งในสี่) ที่จะเปลี่ยนยานพาหนะทั้งหมดมาเป็นเซลล์เชื้อเพลิง ดังนั้นการพัฒนาเซลล์เชื้อเพลิงในระดับใหญ่จะถูกจำกัดได้ด้วยราคาแพลทินัมที่ถีบตัวสูงขึ้นอย่างรวดเร็ว General Motors เชื่อว่ารถที่ใช้เซลล์เชื้อเพลิงจะออกสู่ตลาดในราคาที่เข้าถึงได้ในปลายทศวรรษนี้ บริษัทอื่นก็กำลังเร่งศึกษาค้นคว้าเพื่อให้เซลล์เชื้อเพลิงสามารถประยุกต์ใช้ได้จริง Ballard Power System ผู้บุกเบิกรายหนึ่งของเทคโนโลยีนี้ยินดีที่จะผลิตเซลล์เชื้อเพลิงให้กับผู้ผลิตรถยนต์รายใหญ่ อาทิเช่น

Toyota[4] Ford Volvo Mazda General Motors และ Honda ความสำเร็จของ Ballard ในปัจจุบันคือการลดต้นทุนการผลิต โดยใช้แพลทินัมน้อยลงเหลือเพียงหนึ่งในสิบของระบบเก่า

ประวัติ

หลักการของเซลล์เชื้อเพลิงถูกค้นพบโดยนักวิทยาศาสตร์ชาวสวิส Christian Friedrich Schönbein ในปี ค.ศ. 1838 และตีพิมพ์ในเดือนมกราคมปีถัดมาใน "Philosophical Magazine" อาศัยหลักการจากบทความชิ้นนี้ เซลล์เชื้อเพลิงได้ถูกสร้างขึ้นโดยนักวิทยาศาสตร์ชาว Welsh Sir William Grove ต้นแบบของเขาได้ตีพิมพ์ในปี 1843 จนกระทั่งในปี 1959 วิศวกรชาวอังกฤษ Francis Thomas Bacon ได้สร้างเซลล์เชื้อเพลิงขนาด 5 กิโลวัตต์ได้สำเร็จ ในปีเดียวกันนี้เองที่กลุ่มที่นำโดย Harry Ihrig ได้ผลิตแทรกเตอร์ขนาด 15 กิโลวัตต์ให้กับ Allis-Chalmers ซึ่งได้นำไปแสดงทั่วสหรัฐอเมริกา ระบบนี้ใช้โพแทสเซียมไฮดรอกไซด์เป็นอิเล็กทรอไลต์ ไฮโดรเจนอัดและแก๊สออกซิเจนเป็นสารตั้งต้น ในปีเดียวกันนี้เองที่ Bacon และทีมงานได้สร้างเครื่องผลิตไฟฟ้าขนาด 5 กิโลวัตต์ที่ใช้งานได้จริงสำหรับเครื่องเชื่อม ซึ่งนำไปสู่สิทธิบัตรของ Bacon ในช่วง 1960s ซึ่งหลักการเดียวกันนี้ก็ถูกนำไปใช้ในโครงการอวกาศของสหรัฐด้วยเพื่อผลิตน้ำดื่มและพลังงาน ต้นทุนของเซลล์เชื้อเพลิงในช่วงต้นนี้ยังสูงอยู่มากเพราะค่าวัสดุที่แพง นอกจากนี้ยังทำงานในอุณหภูมิที่สูงมากจนเป็นปัญหาในการประยุกต์ใช้ อย่างไรก็ตามเซลล์เชื้อเพลิงยังดูเป็นตัวเลือกที่ดีเนื่องจากเชื้อเพลิงที่หาง่าย (ไฮโดรเจนและออกซิเจน) และการใช้งานที่สะอาด

การพัฒนาต่อไปในช่วงปี 1980s และ 1990s โดย Geoffrey Ballard เจ้าของบริษัทเซลล์เชื้อเพลิงในแคนาดาที่โด่งดัง Ballard Power Systems Inc. นำมาซึ่งการใช้ Nafion วัสดุที่ถูกกว่าและทนทานเป็นอิเล็กโทรไลต์ และการลดการใช้แพลทินัม ทำให้อนาคตการใช้เซลล์เชื้อเพลิงสำหรับผู้บริโภค เช่นในรถยนต์มีความเป็นไปได้มากขึ้น

อุตสาหกรรมเซลล์เชื้อเพลิง

United Technologies (UTX) เป็นบริษัทแรกที่ได้ผลิตเซลล์เชื้อเพลิง ในช่วง 1960s บริษัทได้สร้างเซลล์เชื้อเพลิงให้องค์การนาซาเพื่อภารกิจอะพอลโล บริษัทลูกของ UTX ชื่อว่า UTC Power ได้เป็นบริษัทแรกที่ผลิตและจำหน่ายเซลล์เชื้อเพลิงเพื่อเป็นระบบผลิตไฟฟ้าร่วมในโรงพยาบาล มหาวิทยาลัย และอาคารสำนักงานขนาดใหญ่ PureCell 200 เป็นระบบขนาด 200 กิโลวัตต์ที่บริษัทได้จำหน่ายออกมาอย่างต่อเนื่อง ในขณะเดียวการทางบริษัทก็ได้เป็นผู้จำหน่ายเซลล์เชื้อเพลิงรายเดียวให้กับนาซ่า ซึ่งปัจจุปันได้ก้าวไปสู่ภารกิจกระสวยอวกาศ นอกจากนี้ยังได้มีความพยายามที่จะพัฒนาเซลล์เชื้อเพลิงสำหรับยวดยานและสถานีกระจายสัญญาณโทรศัพท์ UTC Power อ้างตนเองว่าเป็นผู้นำของโลกในการพัฒนาและผลิตเทคโนโลยีเซลล์เชื้อเพลิง ทั้งสำหรับตลาดระบบจ่ายพลังงานเคลื่อนที่และจ่ายพลังงาน ณ ไซต์งาน ในระบบเซลล์เชื้อเพลิงเพื่อรถยนต์ UTC ได้สร้างเซลล์เชื้อเพลิงอันแรกที่เริ่มทำงานได้แม้ในสภาวะเยือกแข็ง โดยใช้ Proton Exchange Membrane (PEM)

Ballard Power Systems เป็นผู้ผลิตและพัฒนา PEM รายใหญ่ และอ้างว่าเป็นผู้นำของโลกในด้านเซลล์เชื้อเพลิงเพื่อยานพาหนะ Ford Motor Company และ Daimler เป็นผู้ลงทุนรายใหญ่ใน Ballard ในปี 2003 บริษัทรถยนต์โดยส่วนใหญ่เป็นลูกค้าของ Ballard มีแต่ General Motors และ Toyota เท่านั้นที่มีหน่วยพัฒนาเซลล์เชื้อเพลิงของตนเองซึ่งยกเลิกไปในปี 2005 ในปี 2004 Nissan และ Honda ก็ได้เริ่มโครงการเช่นเดียวกันนี้ ปัจจุบันนี้พบว่า GM กำลังร่วมมือกับ Daimler และ BMW เพื่อพัฒนาเซลล์เชื้อเพลิงร่วมกัน

ในขณะนี้ที่ออสเตรเลียตะวันตกได้มีการทดลองใช้รถประจำทางขับเคลื่อนโดยเซลล์เชื้อเพลิงระหว่างเมือง Perth และเมืองท่า Fremantle จำนวนทั้งสิ้น 3 คัน และกำลังจะขยายการทดลองนี้ไปสู่เมืองอื่นๆ ในออสเตรเลียในอีกสามปีข้างหน้า

Plug Power Inc. เป็นอีกหนึ่งในผู้นำการออกแบบและพัฒนา PEM เพื่อการใช้งานอยู่กับที่ เพื่อใช้ประโยชน์สำหรับการสื่อสาร แหล่งพลังงานหลัก ระบบความร้อนร่วม และระบบเชื่อมโครงข่ายพลังงาน

ในปลายปี 2004 MTI MicroFuel Cells บริษัทลูกของ Mechanical Technology Inc. ได้ออกเซลล์เชื้อเพลิงที่ใช้เมทานอลDirect Methanol Fuel Cell (DMFC) รุ่นแรกที่ใช้งานได้จริงทางการค้าออกมา MTI's Mobion™ เป็นเซลล์เชื้อเพลิงที่ใช้เมทานอล 100% ชาร์จพลังงานใหม่ได้โดยไม่ต้องใช้สาย ซึ่งใช้ได้ทั้งสำหรับวงการอุตสาหกรรม ผู้บริโภคทั่วไป รวมไปถึงทางการทหารเพื่อทดแทน Li-ion แบตเตอรี่

ผลกระทบและการนำไปใช้ประโยชน์

ผลกระทบด้านสิ่งแวดล้อม

สิ่งที่มักเข้าใจผิดกันอยู่เสมอคือการใช้ธาตุไฮโดรเจนเป็นเชื้อเพลิง ความจริงแล้วไฮโดรเจนไม่ใช่แหล่งพลังงานหลัก มันเป็นเพียงตัวเก็บพลังงานและต้องผลิตขึ้นมาจากแหล่งพลังงานอื่น

จากหลักการอนุรักษ์พลังงานทำให้ประสิทธิภาพของเซลล์เชื้อเพลิงอาจถูกจำกัดโดยการผลิตพลังงานในขั้นแรก ทำให้ประสิทธิภาพโดยรวมอาจต่ำกว่าเครื่องยนต์เบนซินที่มีประสิทธิภาพ ซึ่งพบได้เมื่อก๊าซไฮโดรเจนต้องถูกอัดภายใต้ความดันสูงหรือทำให้เป็นของเหลวสำหรับยานยนต์ (การสลายน้ำด้วยไฟฟ้ามีประสิทธิภาพเพียง 50%)

อีกทางเลือกหนึ่งของการผลิตไฮโดรเจนคือการใช้มีเทนซึ่งให้ประสิทธิภาพสูงถึงราว 80% หรือใช้สารประกอบไฮโดรคาร์บอนอื่นๆ ซึ่งมีประสิทธิภาพต่างกันออกไป อย่างไรก็ตามการใช้ไฮโดรคาร์บอนเหล่านี้ก่อให้เกิดแก๊สเรือนกระจกได้ อย่างไรก็ตามหากได้มีการจัดการให้ดีภายในโรงงานเราก็สามารถกำจัด CO2 ได้ง่ายกว่าและดีกว่าปล่อยให้รถยนต์ทุกคันปล่อยก๊าซเสียออกมา โครงการกำจัด CO2 ปริมาณมากในขั้นตอนนี้ได้ดำเนินการโดยบริษัทจากนอร์เวย์ Statoil

เซลล์เชื้อเพลิงประเภทอื่นๆ ไม่พบปัญหาเช่นเดียวกันนี้ เช่น เซลล์เชื้อเพลิงทางชีวภาพ (biological fuel cells) ใช้กลูโคสและเมทานอลจากเศษอาหารที่หมักด้วยจุลินทรีย์

อย่างไรก็ตามปัญหาด้านสิ่งแวดล้อมอีกอย่างหนึ่งที่กลุ่มของนักวิทยาศาสตร์จาก Caltech ได้ตั้งข้อสังเกตขึ้นคือ หากเราเปลี่ยนจากระบบเก่ามาเป็นเซลล์เชื้อเพลิงทั้งหมด ปริมาณไฮโดรเจนเพียงเล็กน้อยที่รั่วไหลจาการเก็บและขนส่งอาจเป็นอันตรายต่อชั้นโอโซนได้ แต่อย่างไรก็ตามปริมาณไฮโดรเจนที่ทางกลุ่มตั้งข้อสังเกตได้ถูกปฏิเสธโดยกลุ่มอุตสาหกรรม ปัจจุบันนี้ 50% ของพลังงานในสหรัฐอเมริกาผลิตมาจากถ่านหิน ซึ่งเป็นเชื้อเพลิงที่ไม่สะอาด ถ้าไฮโดรเจนสำหรับเซลล์เชื้อเพลิงมาจากการสลายน้ำด้วยไฟฟ้า ซึ่งยังใช้พลังงานจากโรงไฟฟ้าเหลานี้ เราก็ไม่อาจปฏิเสธได้เลยว่าปัญหาด้านสิ่งแวดล้อมก็ยังจะเกิดขึ้นที่โรงงานไฟฟ้านั่นเอง

การออกแบบเซลล์เชื้อเพลิง

เพื่อให้สามารถแข่งขันทางการค้าได้ยังมีปัญหาในทางปฏิบัติที่ต้องแก้ไขอีกจำนวนมาก การจัดการน้ำเป็นปัญหาสำคัญใน Proton Exchange Membrane Fuel Cells (PEMFCs) ซึ่งเยื่อกั้นต้องชุ่มน้ำอยู่ตลอดเวลา ทำให้น้ำที่ระเหยออกไปต้องเท่ากับน้ำที่ผลิตขึ้นมา ถ้าน้ำระเหยเร็วเกินไป น้ำจะแห้งจากเยื่อกั้นและทำให้ความต้านทานไฟฟ้าเพิ่มขึ้น และเยื่อกั้นจะแตกออก ทำให้เกิดการลัดวงจรของก๊าซ ซึ่งไฮโดรเจนและออกซิเจนจะรวมกันโดยตรง ทำให้เกิดความร้อนสูง ทำลายเซลล์ไปได้ แต่ถ้าน้ำระเหยออกช้าเกินไป ขั้วไฟฟ้าจะถูกน้ำท่วมทำให้สารตั้งต้นไม่อาจเข้าทำปฏิกิริยากับตัวเร่งได้และทำให้ปฏิกิริยาสิ้นสุด วิธีการจัดการน้ำที่เหมาะสมกำลังถูกพัฒนาขึ้นมาในหลายบริษัท

ปัจจัยอื่นๆ ก็มีความสำคัญไม่แพ้กันได้แก่ อุณหภูมิตลอดทั้งเซลล์ ซึ่งบางครั้งอาจเปลี่ยนแปลงและทำลายเซลล์ได้ สารตั้งต้นและผลิตภัณฑ์ในลำดับต่างๆ ของเซลล์แต่ละชนิด การเลือกวัสดุต้องพิจารณาปัจจัยหลายอย่างประกอบกัน ทั้งนี้ไม่มีวัสดุใดที่จะให้ผลดี 100% พร้อมกันในทุกๆ ด้าน นอกจากนี้สำหรับเซลล์บางประเภทจะเน้นที่ความทนทานและอายุการใช้งาน ในขณะที่บางประเภทจะเน้นที่พลังงาน ซึ่งปัญหาการพัฒนาเซลล์ที่เหมาะสมยังเป็นปัญหาที่ท้าทายอยู่มาก

สำหรับการใช้ในยานยนต์ปัญหานั้นมีความซับซ้อนมากขึ้น เช่น รถต้องสามารถติดเครื่องได้ในทุกอุณหภูมิที่คนทั่วทุกมุมโลกอาศัยอยู่ ประมาณ 80% ของที่จอดรถในโลกจำเป็นต้องติดเครื่องได้แม้ในอุณหภูมิต่ำกว่าศูนย์องศา เซลล์เชื้อเพลิงไม่มีปัญหาการทำงานในที่อุณหภูมิสูงแต่ในที่อุณหภูมิต่ำอาจมีปัญหาได้ FCX ของ Honda เป็นเซลล์เชื้อเพลิงรุ่นแรกที่ใช้ในรถที่สามารถทำงานได้ที่อุณหภูมิต่างๆ แต่ที่อุณหภูมิต่ำกว่า -20 °C ก็ยังเป็นปัญหาในการติดเครื่องยนต์

การประยุกต์ใช้เซลล์เชื้อเพลิง

เซลล์เชื้อเพลิงมีประโยชน์อย่างยิ่งในการใช้งานในที่ห่างไกล เช่น ในยานอวกาศ สถานีตรวจอากาศที่ห่างไกล สวนสาธารณะขนาดใหญ่ ชนบท และการประยุกต์ใช้ทางการทหาร เซลล์เชื้อเพลิงไฮโดรเจนสามารถมีขนาดเล็ก น้ำหนักเบาและไม่มีชิ้นส่วนที่เคลื่อนไหว

การประยุกต์ใช้ในอนาคตอันใกล้นี้คงเป็นระบบไฟฟ้าและพลังงานความร้อน combined heat and power (CHP) สำหรับอาคารสำนักงานและโรงงานอุตสาหกรรม ซึ่งระบบนี้จะผลิตไฟฟ้าในอัตราที่คงที่ สามารถขายไฟฟ้าคืนสู่ระบบส่งได้เมื่อไม่ใช้งาน นอกจากนี้ยังผลิตอากาศอุ่นได้เป็นผลพวงมาจากความร้อนที่สูญเสียออกมาระหว่างการทำงาน Phosphoric-acid fuel cells (PAFC) เป็นระบบที่ใช้กันมากสำหรับการผลิตไฟฟ้าและให้ความร้อนร่วมกัน ซึ่งประสิทธิภาพรวมสูงถึง 80% (45-50% เป็นพลังงานไฟฟ้า ส่วนที่เหลือเป็นพลังงานความร้อน) ผู้ผลิตรายใหญ่ที่สุดได้แก่ UTC Power บริษัทลูกของ United Technologies Corporation นอกจากนี้ยังมีการใช้งาน Molten-carbonate fuel cells ในรูปแบบนี้อยู่บ้าง รวมไปถึงการใช้งาน Solid-oxide fuel cell ในขั้นทดลอง

เนื่องจากเซลล์เชื้อเพลิงมีต้นทุนที่สูงต่อกิโลวัตต์ และเพราะว่าประสิทธิภาพจะลดลงตามความหนาแน่นของพลังงาน ดังนั้นมันจึงไม่เหมาะกับการใช้กระแสไฟฟ้าที่มีการเปลี่ยนแปลงมาก โดยเฉพาะไม่เหมาะกับระบบเก็บสะสมพลังงานไฟฟ้าในระดับเล็กและกลาง อิเล็กโทรไลต์เซอร์และเซลล์เชื้อเพลิงรวมกันสามารถคืนพลังงานไฟฟ้าได้น้อยกว่า 50% ของพลังงานที่ป้อนเข้าไป (เรียกว่าround-trip efficiency ) ในขณะที่แบตเตอรี่ตะกั่วกรดที่ราคาถูกกว่าสามารถคืนพลังงานได้ราว 90%

อย่างไรก็ตามระบบอิเล็กโทรไลต์เซอร์ไม่ได้เก็บเชื้อเพลิงไว้โดยตรง แต่พึ่งพาหน่วยเก็บสารเคมีภายนอก ดังนั้นในระบบเก็บพลังงานขนาดใหญ่ เช่นในชนบท แบตเตอรี่ต้องมีขนาดใหญ่มากเกินกว่าที่จะทำงานได้จริง ในขณะที่เซลล์เชื้อเพลิงต้องการพื้นที่เพิ่มสำหรับหน่วยเก็บสารเท่านั้น (โดยทั่วไปมีราคาถูกกว่าอุปกรณ์ทางไฟฟ้าเคมี)

การใช้เซลล์เชื้อเพลิงสำหรับผลิตไฟฟ้าร่วมและให้น้ำร้อนในบ้านเป็นอีกหนึ่งในแนวทางการประยุกต์ใช้ระยะยาวซึ่งจะมีโครงการทดลองเริ่มต้นในปี 2005

รถยนต์ไฮโดรเจนและการเติมเชื้อเพลิง

โตโยต้า มิไร

สถานบริการไฮโดรเจนแห่งแรกอยู่ใน Reykjavík Iceland เปิดบริการในเดือนเมษายน ปี 2003 ซึ่งให้บริการกับรถบัสสามคันสร้างโดย Daimler ซึ่งให้บริการแก่สาธารณชนโดยทั่วไปในเขต Reykjavík สถานีไฮโดรเจนแห่งนี้ผลิตไฮโดรจนด้วยตัวเองโดยใช้การแยกน้ำด้วยไฟฟ้า (ผลิตโดย Norsk Hydro) ซึ่งไม่ต้องการอะไรนอกเหนือไปจากน้ำและไฟฟ้า Shell เป็นอีกหนึ่งในผู้ร่วมโครงการ สถานีบริการแห่งนี้ไม่มีหลังคาเพื่อให้ไฮโดรเจนที่อาจรั่วไหลออกไปสู่บรรยากาศได้

มีรถยนต์และรถบัสต้นแบบจำนวนมากซึ่งอยู่บนพื้นฐานของเทคโนโลยีเซลล์เชื้อเพลิงที่อยู่ระหว่างการพัฒนา งานวิจัยก็กำลังเดินหน้าต่อไปในหลายบริษัทเช่น BMW Hyundai และ Nissan รถที่สามารถออกจำหน่ายได้จริงคงยังไม่ออกสู่ตลาดจนกว่าจะถึงปี 2010 อย่างไรก็ตามได้มีรถบัสเซลล์เชื้อเพลิงที่กำลังดำเนินการกันอยู่ เช่น Thor ของ UTC Power ในแคลิฟอร์เนีย ดำเนินการโดย SunLine Transit Agency

เร็วๆ นี้ มีนักศึกษากลุ่มที่ชื่อว่า Energy-Quest กำลังจะเดินทางรอบโลกด้วยเรือที่ใช้พลังงานเซลล์เชื้อเพลิง การเดินทางนี้มีชื่อว่า Triton

นอกจากนี้ปัญหาการจัดเก็บไฮโดรเจนอาจถูกกำจัดให้หมดไปได้ด้วยการใช้ Sodium borohydride (NaBH4) ซึ่งทำให้เก็บไฮโดรเจนไว้ได้มากแม้ที่ความดันบรรยากาศ

การนำไปใช้เป็นเครื่องกำเนิดไฟฟ้า

บมความหลัก: ตัวจ่ายพลังงานบลูม

ตัวจ่ายพลังงานบลูม (อังกฤษ: Bloom Energy Server (the Bloom Box) เป็นเซลล์เชื้อเพลิงแบบออกไซด์ของแข็ง (SOFC) สร้างขึ้นโดยบริษัท Bloom Energy แห่งซันนีเวล, แคลิฟอร์เนีย, ที่สามารถใช้ปัจจัยการผลิตได้หลากหลาย (รวมทั้งสารไฮโดรคาร์บอนที่เป็นของเหลวหรือก๊าซ ที่ผลิตจากแหล่งชีวภาพ) เพื่อผลิตกระแสไฟฟ้า ณ จุดที่มันจะถูกนำมาใช้. มันสามารถทนต่ออุณหภูมิสูงถึง 1,800 °F (980 °C), ที่จะทำลายเซลล์เชื้อเพลิงอื่นๆอีกมากมายหรือต้องการการบำรุงรักษา. ตามคำกล่าวอ้างของบริษัทดังกล่าว, เพียงเซลล์เดียว (แผ่นโลหะผสมขนาด 100 มิลลิเมตร × 100 มิลลิเมตรที่คั่นอยู่ระหว่างชั้นของเซรามิกสองชั้น) สามารถผลิตไฟฟ้าได้ 25 วัตต์.

บริษัทดังกล่าวยังกล่าวอีกว่า ราวปี 2012 เซิร์ฟเวอร์ที่บรรจุชั้นของเซลล์เชื้อเพลิงชนิดนี้กว่า 200 หน่วยได้ถูกนำไปใช้ในรัฐแคลิฟอร์เนียสำหรับหลายองค์กรรวมทั้งอีเบย์, Google, Yahoo, และ Wal-Mart.

ภาพอธิบายระบบการทำงาน

ดูเพิ่ม

ประเภทของเซลล์เชื้อเพลิง

เทคโนโลยีสัมพันธ์

อ้างอิง

  1. Khurmi, R. S. Material Science.
  2. Nice, Karim and Strickland, Jonathan. "How Fuel Cells Work: Polymer Exchange Membrane Fuel Cells". How Stuff Works, accessed 4 August 2011
  3. Prabhu, Rahul R. (13 January 2013). "Stationary Fuel Cells Market size to reach 350,000 Shipments by 2022". Renew India Campaign. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2013-01-19. สืบค้นเมื่อ 2013-01-14.
  4. | Ballard Sells 1-Megawatt Distributed Generation System to Toyota For California Campus Facility

แหล่งข้อมูลอื่น

Read other articles:

Renang pada Olimpiade Musim Panas 1952LokasiStadion Renang HelsinkiHelsinkiTanggal26 Juli–2 Agustus 1952Jumlah disiplin11Peserta319 dari 48 negara← 19481956 → Renang pada Olimpiade Musim Panas 1952 adalah pelaksanaan cabang olahraga renang pada penyelenggaraan Olimpiade Musim Panas 1952. Kompetisi pada cabang olahraga ini berlangsung di Stadion Renang Helsinki, Helsinki. Edisi ini menandingkan 11 nomor. 319 atlet dari 48 negara bertanding dalam edisi ini...

 

Ostrobotnie du Nord Pohjois-Pohjanmaa (fi)Norra Österbotten (sv) Localisation de l'Ostrobotnie du Nord Administration Pays Finlande Type Région Capitale Oulu Chef de la région Pauli Harju ISO 3166-2 FI-14 Démographie Gentilé Nord-Ostrobotnien, Nord-Ostrobotnienne Population 412 238 hab. (2019) Densité 11 hab./km2 Langue(s) finnois, suédois Géographie Superficie 39 182,10 km2 modifier  L'Ostrobotnie du Nord (en finnois : Pohjois-Pohjanmaa, en suédois...

 

У Вікіпедії є статті про інші значення цього терміна: Сор. Сор Координати 39°29′21″ пн. ш. 47°01′19″ сх. д. / 39.48916667002777814° пн. ш. 47.02222222002777841° сх. д. / 39.48916667002777814; 47.02222222002777841Координати: 39°29′21″ пн. ш. 47°01′19″ сх. д. / 39.48916667002777814° ...

Pour les articles homonymes, voir 163e régiment. Cet article est une ébauche concernant une unité ou formation militaire française. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 163e régiment d'infanterie Dessin du revers du drapeau du 163e RI. Création 1793 Dissolution 1923 Pays France Branche Armée de terre Type régiment d'infanterie Rôle infanterie Ancienne dénomination 163e demi-bri...

 

У Вікіпедії є статті про інших людей із прізвищем Мідзушіма. Мідзушіма Коїчіяп. 水島宏一Загальна інформаціяГромадянство  Японія[1]Народження 1 серпня 1965(1965-08-01) (58 років)Зріст 162 см[2]Вага 58 кг[2]Alma mater Університет НіхонСпортВид спорту спортивна гімнастика...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2022) فيليب في. توبياس   معلومات شخصية الميلاد 14 أكتوبر 1925  ديربان  الوفاة 7 يونيو 2012 (86 سنة)   جوهانسبرغ  مواطنة جنوب إفريقيا  عضو في الجمعية الملكية...

Neuschönau Lambang kebesaranLetak Neuschönau NegaraJermanNegara bagianBayernWilayahNiederbayernKreisFreyung-GrafenauPemerintahan • MayorHeinz Wolf (FWG)Luas • Total27,54 km2 (1,063 sq mi)Ketinggian650 m (2,130 ft)Populasi (2013-12-31)[1] • Total2.214 • Kepadatan0,80/km2 (2,1/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos94556Kode area telepon08558 u. 08552 (Altschönau)Pelat kendaraanFRGSitus webwww.neu...

 

American college sports coach and athletic director (1876-1950) Lynn St. JohnBiographical detailsBorn(1876-11-18)November 18, 1876Union City, Pennsylvania, U.S.DiedSeptember 30, 1950(1950-09-30) (aged 73)Columbus, Ohio, U.S.Coaching career (HC unless noted)Football1902–1905Wooster1909–1911Ohio WesleyanBasketball1902–1909Wooster1910–1912Ohio Wesleyan1911–1919Ohio StateBaseball1910–1912Ohio Wesleyan1913–1928Ohio State Administrative career (AD unless noted)1912–1947Ohio Sta...

 

2010 Indian filmGudu Gudu GunjamMovie PosterDirected byVeeru K.Screenplay byMarudhuri RajaStory byVeeru K.Produced byV. Ravi Kumar ReddyStarringRajendra PrasadSitharaKasturiParthuChahatArthi PuriCinematographyT. RajendraMadhu A NaiduEdited byNandamuri HariMusic byVeeru K.ProductioncompanySri ChitraRelease date 27 August 2010 (2010-08-27) Running time111 minutesCountryIndiaLanguageTelugu Gudu Gudu Gunjam is 2010 Telugu-language comedy film, produced by V. Ravi Kumar Reddy on Sri...

African American traditional spiritual song For other uses, see Sinner Man (disambiguation). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2010) (Learn how and when to remove this template message) Sinner ManSingle by Les Baxter Chorus and Orchestra with Will HoltA-sideTango of the DrumsReleased1956Recorded1956GenreGospel, jazz, popLength3:07LabelC...

 

Fictional character in the television series Buffy the Vampire Slayer Fictional character AdamBuffy the Vampire Slayer characterGeorge Hertzberg portrayed Adam mindful both of boyish innocence and a programmed directive to kill.First appearanceThe I in Team (2000)Last appearanceLessons (2002)Created byJoss WhedonPortrayed byGeorge HertzbergIn-universe informationAffiliationInitiativeClassificationBio-mechanical demonoidNotable powersSuperhuman strength, stamina, and durability. Skewer, collap...

 

XIII CorpsOn Üçüncü KolorduAli İhsan Bey and his men (Hamadan)Active1911–Country Ottoman EmpireTypeCorpsGarrison/HQBaghdadPatronSultans of the Ottoman EmpireEngagementsMesopotamian campaignPersian CampaignCommandersNotablecommandersMirliva Hüsamettin PashaMirliva Ali İhsan Pasha (February 1916-October 1917[1])Miralay Selâhattin BeyMilitary unit The XIII Corps of the Ottoman Empire (Turkish: 13 ncü Kolordu or On Üçüncü Kolordu) was one of the corps of the Ottoman Ar...

BojonggentengKecamatanBojonggentengPeta lokasi Kecamatan BojonggentengTampilkan peta Kabupaten SukabumiBojonggentengBojonggenteng (Jawa Barat)Tampilkan peta Jawa BaratBojonggentengBojonggenteng (Jawa)Tampilkan peta JawaBojonggentengBojonggenteng (Indonesia)Tampilkan peta IndonesiaKoordinat: 6°50′35″S 106°43′14″E / 6.8429624262442°S 106.72060757114271°E / -6.8429624262442; 106.72060757114271Koordinat: 6°50′35″S 106°43′14″E / 6.84296...

 

Vault housing the British Crown Jewels in the Tower of London 51°30′29″N 0°4′34″W / 51.50806°N 0.07611°W / 51.50806; -0.07611 Entrance to the Jewel House The Jewel House is a vault housing the British Crown Jewels in the Waterloo Block (formerly a barracks) at the Tower of London. It was opened by Queen Elizabeth II in 1994 and refurbished in 2012. Regalia have been kept in various parts of the Tower since the 14th century after a series of succes...

 

1992 video gameSuper SWIVFirepower 2000Mega SWIVEuropean SNES cover artDeveloper(s)SCi GamesPublisher(s)Time Warner Interactive (EU)Sunsoft (US)Coconuts Japan (JP)Artist(s)Ned Langman, Robert WhitakerComposer(s)David WhittakerPlatform(s)Super NES, Mega DriveReleaseSuper NESNA: November 1992JP: November 1992EU: August 1993Mega DriveEU: November 1994Genre(s)Scrolling shoot'em upMode(s)Single-player 2-player cooperative Super SWIV (Firepower 2000 in the US) is a top-down shoot 'em up released fo...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Obizzo II d'Este – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) Obizzo II d'Este Obizzo II d'Este (c. 1247 – 13 February 1293) was Marquis of Ferrara and Ancona. Biography He was a bastard, the i...

 

У этого термина существуют и другие значения, см. Гуано (значения). В Викисловаре есть статья «гуано» Птичье гнездо из гуано Гуа́но (исп. guano от кечуа wanu) — разложившиеся естественным образом остатки помёта морских птиц. Содержание 1 Значение 2 История 3 См. также 4 Прим...

 

1983 film by Geoff Murphy UtuDVD coverDirected byGeoff MurphyWritten by Geoff Murphy Keith Aberdein Produced byGeoff MurphyStarring Anzac Wallace Bruno Lawrence Kelly Johnson Wi Kuki Kaa Tim Elliot Merata Mita Tania Bristowe Martyn Sanderson Ilona Rodgers CinematographyGraeme CowleyEdited byMichael J. HortonMusic byJohn CharlesRelease date1983Running time104 minutesCountryNew ZealandLanguages English Maori Box officeNZ$600,000 (est) (New Zealand)[1] Utu is a 1983 New Zealand war film ...

Glasgow shown within Scotland A scheduled monument in Scotland is a nationally important archaeological site or monument which is given legal protection by being placed on a list (or schedule) maintained by Historic Environment Scotland. The aim of scheduling is to preserve the country's most significant sites and monuments as far as possible in the form in which they have been inherited.[1] The process of scheduling is governed by the Ancient Monuments and Archaeological Areas Act 19...

 

Emperor of China from 1820 to 1850 Minning redirects here. For the town, see Minning, Ningxia. Daoguang Emperor道光帝Emperor of the Qing dynastyReign3 October 1820 – 26 February 1850PredecessorJiaqing EmperorSuccessorXianfeng EmperorPrince Zhi of the First RankTenure1813 – 3 October 1820BornAisin Gioro Mianning(愛新覺羅·綿寧)(1782-09-16)16 September 1782(乾隆四十七年 八月 十日)Xiefang Hall, Forbidden CityDied26 February 1850(1850-02-26) (aged 67)(道光三十年 ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!