ในสมการเลอจองดร์ จะมีสมการเลอจองดร์สมทบ (Associated Legendre polynomials) ที่จะเป็นผลเฉลยของสมการเลอจองดร์และหนุนามเลอจองดร์จะเป็นผลเฉลยของการสมมาตรบนแกน Z แบบทรงกระบอก
ส่วนในทางคณิตศาสตร์แล้วนั้นฟังก์ชันเลอจองดร์จะเป็นผลเฉลยของสมการอนุพันธ์ของเลอจองดร์ :
ผู้คิดค้นสมการนี้ คือ อาเดรียง-มารี เลอฌ็องดร์ สมการอนุพันธ์สามัญ (ordinary differential equation, ODE)นี้มักจะนำมาใช้ในวิชาฟิสิกส์และเทคนิคอื่น ๆ โดยเฉพาะอย่างยิ่งจะปรากฏในสมการลาปลาซ (Laplace's equation) ซึ่งสัมพันธ์กับการแก้สมการโดยใช้สมการเชิงอนุพันธ์ย่อย (partial differential equations, PDE)ในระบบพิกัดทรงกลม (spherical coordinates)
สมการเชิงอนุพันธ์ของเลอจองดร์มักจะนำไปใช้แก้ปัญหาของอนุกรมกำลัง (power series)สมการที่มีค่า regular singular points ที่ x= ±1 แต่โดยทั่วไปแล้วผลเฉลยของอนุกรมที่จุดเริ่มต้นจะมีค่าลู่เข้าที่ |x| < 1 เมื่อ n เป็นเลขจำนวนเต็ม ผลเฉลยของ Pn(x) จะ regular ที่ x = 1 และ regular ที่ x = −1 และอนุกรมเหล่านี้จะหาค่าได้ (เช่น พหุนาม)
ผลเฉลยสำหรับ n = 0, 1, 2, … (ที่มีค่า normalization Pn(1) = 1) มาจากสมบัติของการ orthogonal ที่เรียกว่า พหุนามของเลอจองดร์ (Legenre polynomials) ในแต่ละพหุนามของเลอจองดร์ Pn(x) คือ พหุนามที่ n สามารถที่จะใช้สูตรของ Rodrigues
ในพหุนามเหล่านี้จะนำมาใช้ใน สมการเชิงอนุพันธ์ของเลอจองดร์ (สมการแรก) ที่จะมีจำนวนการอนุพันธ์เป็น n+1 ครั้ง ทั้ง 2 ข้างของสมการเอกลักษณ์
และมักจะใช้กฎทั่วไปของ Leibniz สำหรับการทำอนุพันธ์ซ้ำ ค่า Pn สามารถนิยามเหมือนกับสัมประสิทธ์ในการกระจายของอนุกรมเทย์เลอร์ (Taylor series expansion)
ในทางฟิสิกส์นั้นฟังก์ชันก่อกำเนิดสามัญ (ordinary generating function) นี้ จะเป็นพื้นฐานของ multipole expansions
ตัวอย่างของพหุนามเลอจองดร์
กราฟแสดงค่าพหุนาม
กราฟแสดงค่าพหุนามเมื่อ n ตั้งแต่ 0 ถึง 5