För N olika men lika sannolika utfall, x1, x2, ... ,xN, är sannolikheten för vart och ett av dessa utfall
Exempel
Vid en dragning i Lotto (där utfallen får anses vara likformigt fördelade) är sannolikheten att man exempelvis först drar numret 6 lika med 1/35. (N = 35 eftersom det i Lotto finns sammanlagt 35 olika nummer att välja mellan).
Kontinuerlig likformig fördelning
En kontinuerlig likformig sannolikhetsfördelning kallas också rektangulärfördelning, eftersom täthetsfunktionen har utseendet av en rektangel. Den har två parametrar, a och b, som betecknar den nedre respektive övre gränsen för vilka värden den rektangulärfördelade slumpvariabeln kan anta. Täthetsfunktionen för rektangulärfördelningen är:[1]
^ Rudemo, Mats; Lennart Råde (1970). Sannolikhetslära och statistik med tekniska tillämpningar: del 1. Stockholm: Biblioteksförlaget. sid. 153-154. ISBN 9-15420-071-7