Микроскоп (грчки: micros = мали и scopos = посматрач), справа којом се посматрају невидљиви или слабо видљиви блиски објекти. Помоћу електромагнетних зрачења различитих таласних дужина, користећи физичка својства дата у њиховој структури, законитостима лома и отклона, увећава слике посматраних објеката и раздваја блиске тачке на њима. У зависности од врсте електромагнетских зрачења (величини таласних дужина) које користи, разликују се: светлосни (оптички), ултравиолетни, рендгенски, корпускуларни (електронски)... Микроскопом можемо видети слику предмета под много већим углом од оног којим бисмо га видели „голим“ оком у нормалној видној даљини. Наука која истражује помоћу ових инструмената назива се микроскопија. Временом је из речи микроскоп изведен појам: који поред уобичајеног, невидљив простом оку, има и пренесено значење, веома мали, слабо видљив, занемарљив, мало битан, небитан...[1],[2][3]
Историја
Човек је вероватније случајно открио да стакло одређеног изгледа, или можда кап воде, увећавају. Свесно су усавршена сочива са циљем да увећања буду већа, а слика објективнија. Направљена је лупа, једноставан микроскоп са једним сочивом.[4][5][6] Ускоро је настала и лупа са системом сочива. Она је била већег увећања и боље је исправљала грешке у слици предмета. Када се по оптичкој оси поставе два сочива настаје оптички микроскоп у данашњем смислу те речи.[7][8] Сочивима су додавани читави компатибилни системи сочива и тако је слика објекта, добијена видљивом светлошћу, учињена максимално великом.[9][10][11][12] Постоје индикације да је Галилео Галилеј (који се понекад наводи и као проналазач сложених микроскопа) након 1610. године установио је да се може ограничити фокус његовог телескопа ради посматрања малих објеката. Након што је видео сложен микроскоп који је Дребел изложио у Риму 1624. године, он је изградио своју побољшану верзију.[13][14][15]Ђиовани Фабер је сковао назив микроскоп за сложени микроскоп који је Галилео поднео Академији деj Линчеj 1625. године.[16]
Када су исцрпљене практичне могућности усавршавања оваквих оптичких микроскопа, потпомогнут новим технологијама, а у намери да не стане проничући у микросвемир, човек прави први ултравиолетни микроскоп. Као извор светлости користи се обична живина светиљка под високим притиском уз водено хлађење. Постижу се повећања од 500 - 5000 пута, а моћ раздвајања је 0,2-0,1μ. У намери и потреби за већим увећањима и бољим резолуцијама добијених слика настаје рендгенски микроскоп. Почетна испитивања 1936. године врши Ролф Максимилијан Сиверт. Овај микроскоп користи X-зраке да произведе увећане слике малих објеката. X-зраци из тачке извора стварају увећану слику на фосфорном екрану. Успешан снимак рендгенским микроскопом је направљен 1951. године. Направили су га британски физичари Елис Кослет и Вилијам Никсон.[17] То је био први инструмент чија је резолуција била упоредива са оном код оптичких микроскопа, и био је слављен као средство за испитивање скривене структуре у стенама, металима, костима, зубима, рудама и дрвету. Рендгенски микроскоп има бољу резолуцију него најбољи оптички микроскоп.
У потрази за већим и бољим увећањима, Макс Кнол[18] и Ернст Руска[19] конструисали су први електронски микроскоп 1931. године. То је први корпускуларни микроскоп. Поштујући доследност принципа природе и одатле изведену аналогију, они праве електронска сочива. То су моћни електромагнети који чине отклон електронима баш као што то раде сочива са светлошћу. На тај начин и увећавају и раздвајају блиске тачке на посматраном предмету. Предмет је смештен у близини објектива, а то су електронска или електростатичка „сочива”. Добијену реалну и увећану слику предмета повећавају електронска или електростатичка „сочива” окулара. Како човечје око не региструје електронске зраке, слика се пројектује на флуоресцентном заслону или фотографској плочи. Добијена увећања су и по 200000 пута. И ови микроскопи се и даље усавршавају. Међутим, како се код електронских микроскопа не може по вољи повећати нумеричка апертура, тј. раздвајање блиских тачака на посматраном предмету прибегло се и новим технологијама. Направљени су протонски микроскопи. Успешни пионири у овом послу су Француски научници Клод Магнан[20] и Шансон.[21]
Поделе микроскопа
Подела по медијима
Микроскопе делимо према таласној дужини електромагнетних зрачења:
^The history of the telescope by Henry C. King, Harold Spencer Jones Publisher Courier Dover Publications, 2003, pp. 25–27 ISBN0-486-43265-3
^Atti Della Fondazione Giorgio Ronchi E Contributi Dell'Istituto Nazionale Di Ottica, Volume 30, La Fondazione-1975, p. 554
^Murphy, Douglas B.; Davidson, Michael W. (2011). Fundamentals of light microscopy and electronic imaging (2nd изд.). Oxford: Wiley-Blackwell. ISBN978-0-471-69214-0.
Kumar, Naresh; Weckhuysen, Bert M.; Wain, Andrew J.; Pollard, Andrew J. (април 2019). „Nanoscale chemical imaging using tip-enhanced Raman spectroscopy”. Nature Protocols. 14 (4). ISSN1750-2799. PMID30911174. doi:10.1038/s41596-019-0132-z.
Lee, Joonhee; Crampton, Kevin T.; Tallarida, Nicholas; Apkarian, V. Ara (април 2019). „Visualizing vibrational normal modes of a single molecule with atomically confined light”. Nature. 568 (7750). ISSN1476-4687. PMID30944493. doi:10.1038/s41586-019-1059-9.
Courjon, D.; Bulabois, J. (1979). „Real Time Holographic Microscopy Using a Peculiar Holographic Illuminating System and a Rotary Shearing Interferometer”. Journal of Optics. 10 (3). Bibcode:1979JOpt...10..125C. doi:10.1088/0150-536X/10/3/004.