Prostor verovatnoće

U teoriji verovatnoće, prostor verovatnoće ili triplet verovatnoće je matematička konstrukcija kojom se modeluju procesi stvarnog sveta (ili „eksperimenti”) koji se sastoje od stanja koja se slučajno javljaju. Prostor verovatnoće je konstruisan sa određenom vrstom situacije ili eksperimenta na umu. Smatra se da svaki put kada se pojavi takva vrsta, skup mogućih ishoda je isti i da su verovatnoće iste.

Prostor verovatnoće sastoji se od tri dela:[1][2]

  1. Prostor uzoraka, , koji je skup svih mogućih ishoda.
  2. Skup događaja , gde je svaki događaj skup koji sadrži nula ili više ishoda.
  3. Dodela verovatnoća događajima; to jest, funkcija od događaja do verovatnoće.

Ishod je rezultat pojedinačnog izvršenja modela. Budući da pojedinačni ishodi mogu biti od malo praktične koristi, primenjuju se složeniji događaji za karakterizaciju grupa ishoda. Kolekcija svih takvih događaja je σ-algebra . Na kraju, postoji potreba da se precizira verovatnoća da se svaki događaj dogodi. To se vrši pomoću funkcije mere verovatnoće, .

Nakon što se utvrdi prostor verovatnoće, pretpostavlja se da „priroda” odabira pojedinačan ishod, , iz prostora uzorka . Za sve događaje u koji sadrže odabrani ishod (treba imati u vidu da je svaki događaj podskup od ) se kaže da su se „dogodili”. Selekcija koju vrši priroda odvija se na takav način da ako bi se eksperiment ponavljao beskonačno mnogo puta, relativne učestalosti pojavljivanja svakog od događaja bi se poklopile sa verovatnoćama koje je propisala funkcija .

Ruski matematičar Andrej Kolmogorov je uveo pojam prostora verovatnoće, zajedno sa drugim aksiomima verovatnoće, tokom 1930-ih.[3][4][5][6] Danas postoje alternativni pristupi za aksiomatizaciju teorije verovatnoće, npr. algebra slučajnih promenljivih.[7]

Ovaj se članak bavi matematikom manipulisanja verovatnoćama. U članku „interpretacije verovatnoće” opisano je nekoliko alternativnih pogleda na to šta „verovatnoća” znači i kako to treba tumačiti. Pored toga, bilo je pokušaja da se konstruišu teorije za količine koje su notaciono slične verovatnoći, ali ne poštuju sva njena pravila; videti, na primer, slobodnu verovatnoću, rasplinutu logiku, teoriju mogućnosti, negativnu verovatnoću i kvantnu verovatnoću.[8][9]

Definicija

Ukratko, prostor verovatnoće je prostor mere tako da je mera celog prostora jednaka jedinici.

Proširena definicija je sledeće: prostor verovatnoće je triplet koji se sastoji od:

  • prostor uzorka - proizvoljni neprazni skup,[10][11]
  • σ-algebra (koja se takođe naziva σ-polje) - skup podskupova od ,[12][13][14] koji se nazivaju događaji,[15][16][17] tako da:
    • sadrži prostor uzoraka: ,
    • je zatvoren pod komplementima: ako je , onda je takođe ,
    • je zatvoren pod prebrojivim unijama: ako je za , tada je isto tako
      • Zaključak iz prethodna dva svojstva i De Morganovih zakona[18][19][20] je da je takođe zatvoren pod prebrojivim presecima: ako je za , onda je takođe
  • mera verovatnoće — funkcija na takva da:
    • P je prebrojivo aditivna[21] (takođe zvana σ-aditivna): ako je prebrojiva kolekcija uparenih nepresecajućih skupova,[22][23] onda je
    • mera celokupnog prostora uzoraka je jednaka jedan: .

Reference

  1. ^ Loève, Michel. Probability Theory, Vol 1. New York: D. Van Nostrand Company, 1955.
  2. ^ Stroock, D. W. (1999). Probability theory: an analytic view. Cambridge University Press.
  3. ^ Kolmogorov, Andrey (1950). Foundations of the theory of probability. New York, USA: Chelsea Publishing Company. 
  4. ^ Aldous, David. „What is the significance of the Kolmogorov axioms?”. David Aldous. Приступљено 19. 11. 2019. 
  5. ^ Cox, R. T. (1946). „Probability, Frequency and Reasonable Expectation”. American Journal of Physics. 14 (1): 1—10. Bibcode:1946AmJPh..14....1C. doi:10.1119/1.1990764. 
  6. ^ Cox, R. T. (1961). The Algebra of Probable Inference. Baltimore, MD: Johns Hopkins University Press. 
  7. ^ Hernandez, Hugo (2016). „Modelling the effect of fluctuation in nonlinear systems using variance algebra - Application to light scattering of ideal gases”. ForsChem Research Reports (на језику: енглески). 2016-1. doi:10.13140/rg.2.2.36501.52969. 
  8. ^ Deutsch, David (8. 8. 1999). „Quantum Theory of Probability and Decisions”. Proceedings of the Royal Society A. 455 (1988): 3129—3137. S2CID 5217034. arXiv:quant-ph/9906015Слободан приступ. doi:10.1098/rspa.1999.0443. Приступљено 5. 12. 2022. 
  9. ^ Greaves, Hilary (21. 12. 2006). „Probability in the Everett Interpretation”. Philosophy Compass. 2 (1): 109—128. doi:10.1111/j.1747-9991.2006.00054.x. Архивирано из оригинала 06. 12. 2022. г. Приступљено 6. 12. 2022. 
  10. ^ Weisstein, Eric W. „Empty Set”. mathworld.wolfram.com (на језику: енглески). Приступљено 2020-08-11. 
  11. ^ Rudin, Walter (1976). Principles of Mathematical Analysis (3rd изд.). McGraw-Hill. стр. 300. ISBN 007054235X. 
  12. ^ „Probability, Mathematical Statistics, Stochastic Processes”. Random. University of Alabama in Huntsville, Department of Mathematical Sciences. Приступљено 30. 3. 2016. 
  13. ^ Billingsley, Patrick (2012). Probability and Measure (Anniversary изд.). Wiley. ISBN 978-1-118-12237-2. 
  14. ^ Rudin, Walter (1987). Real & Complex Analysis. McGraw-Hill. ISBN 0-07-054234-1. 
  15. ^ Leon-Garcia, Alberto (2008). Probability, statistics and random processes for electrical engineering. Upper Saddle River, NJ: Pearson. ISBN 9780131471221. 
  16. ^ Pfeiffer, Paul E. (1978). Concepts of probability theory. Dover Publications. стр. 18. ISBN 978-0-486-63677-1. 
  17. ^ Foerster, Paul A. (2006). Algebra and trigonometry: Functions and applications, Teacher's edition (Classics изд.). Upper Saddle River, NJ: Prentice Hall. стр. 634. ISBN 0-13-165711-9. 
  18. ^ Copi, Irving M.; Cohen, Carl; McMahon, Kenneth. Introduction to Logic. doi:10.4324/9781315510897. 
  19. ^ Hurley, Patrick J. (2015), A Concise Introduction to Logic (12th изд.), Cengage Learning, ISBN 978-1-285-19654-1 
  20. ^ Moore, Brooke Noel (2012). Critical thinking. Richard Parker (10th изд.). New York: McGraw-Hill. ISBN 978-0-07-803828-0. OCLC 689858599. 
  21. ^ Bhaskara Rao, K. P. S.; Bhaskara Rao, M. (1983). Theory of charges: a study of finitely additive measures. London: Academic Press. стр. 35. ISBN 0-12-095780-9. OCLC 21196971. 
  22. ^ Halmos, P. R. (1960), Naive Set Theory, Undergraduate Texts in Mathematics, Springer, стр. 15, ISBN 9780387900926 .
  23. ^ Smith, Douglas; Eggen, Maurice; St. Andre, Richard (2010), A Transition to Advanced Mathematics, Cengage Learning, стр. 95, ISBN 978-0-495-56202-3 .

Literatura

Spoljašnje veze

Read other articles:

ДеревняНижние Булдаки 58°33′51″ с. ш. 49°48′58″ в. д.HGЯO Страна  Россия Субъект Федерации Кировская область Муниципальный район Слободской Сельское поселение Шиховское История и география Первое упоминание 1671 Прежние названия Мокеевская, Костяевская Часовой по

 

Pelukis Bunga Matahari (Potret Vincent van Gogh)SenimanPaul GauguinTahun1888MediumMinyak di kanvasUkuran73 cm × 91 cm (28.7 in × 35.8 in)LokasiMuseum Van Gogh Pelukis Bunga Matahari (dalam bahasa Prancis: Le Peintre de Tournesols) adalah sebuah potret Vincent van Gogh karya Paul Gauguin pada Desember 1888. Latar belakang Potret tersebut dilukis saat Gauguin mengunjungi Van Gogh di Arles, Prancis. Vincent bersama dengan Gauguin datang ke Arles untuk ...

 

Protein-coding gene in the species Homo sapiens GAD1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes2OKJ, 3VP6IdentifiersAliasesGAD1, CPSQ1, GAD, SCP, glutamate decarboxylase 1, DEE89External IDsOMIM: 605363 MGI: 95632 HomoloGene: 635 GeneCards: GAD1 Gene location (Human)Chr.Chromosome 2 (human)[1]Band2q31.1Start170,813,213 bp[1]End170,861,151 bp[1]Gene location (Mouse)Chr.Chromosome 2 (mouse)[2]Band2 C2|2 41.63 cMStart70,383,416 bp&#...

Words and phrases to describe familial relationships This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2008) (Learn how and when to remove this template message) Part of a series on theAnthropology of kinship Basic concepts Family Lineage Affinity Consanguinity Marriage Incest taboo Endogamy Exogamy Moiety Monogamy Polygyny Polygamy Concubinage Polyandr...

 

El paramento define lo vertical de una construcción. Paramento exterior de la muralla de Mansilla de las Mulas, España. Un paramento es cada una de las caras de todo elemento constructivo vertical, como paredes o lienzos de muros.[1]​ En muchas ocasiones se hace referencia al paramento como la superficie de un muro. La cara que mira al exterior del edificio, o superficie, se denomina paramento exterior. En ingeniería hidráulica, se define como paramento al muro de contención de las...

 

  اللجنة الأولمبية البريطانية (بالإنجليزية: British Olympic Association)‏[1]  اللجنة الأولمبية البريطانية‌ الاختصار (بالإنجليزية: BOA)‏[1]  البلد المملكة المتحدة[1]  المقر الرئيسي لندن  تاريخ التأسيس 1905[1]  مكان التأسيس لندن[1]  الرئيس آن (1983–)  الرئ...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Uttar Pradesh Cricket Association – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this template message) Uttar Pradesh Cricket Associationउत्तर प्रदेश क्रिकेट संघSportCricketJurisdictionUttar P...

 

Pemilihan umum Bupati Nias Barat 20242020202927 November 2024Kandidat Peta persebaran suara Bupati petahanaKhenoki Waruwu Hanura Bupati terpilih belum diketahui Sunting kotak info • L • BBantuan penggunaan templat ini Pemilihan umum Bupati Nias Barat 2024 dilaksanakan pada 27 November 2024 untuk memilih Bupati Nias Barat periode 2024-2029.[1] Pemilihan Bupati (Pilbup) Nias Barat tahun tersebut akan diselenggarakan setelah Pemilihan umum Presiden Indonesia 2024 (Pilpres) ...

 

Alleged tomb in Jerusalem, Israel Tomb of Simeon the JustShown within East Central JerusalemShow map of East Central JerusalemTomb of Simeon the Just (Jerusalem)Show map of JerusalemLocation'Uthman Ibn 'Affan StreetShimon HaTzadik, East JerusalemCoordinates31°47′31″N 35°13′50″E / 31.79186°N 35.23062°E / 31.79186; 35.23062Typeburial chamberHistoryFounded2nd century CE[1]Site notesPublic accessFree Jews visiting the tomb in 1927 The Tomb of Simeo...

Bagian dari seri artikel mengenaiSejarah Jepang PeriodePaleolitiksebelum 14.000 SMJōmon14.000–300 SMYayoi300 SM – 250 MKofun250–538Asuka538–710Nara710–794Heian794–1185Kamakura1185–1333Restorasi Kemmu1333–1336Muromachi (Ashikaga) Nanboku-chōSengoku 1336–1573Azuchi–Momoyama Perdagangan dengan Nanban 1568–1603Edo (Tokugawa) SakokuPersetujuan KanagawaBakumatsu 1603–1868Meiji Perang BoshinRestorasiPerang Sino-Jepang PertamaPemberontakan BoxerPerang Rusia-Jepang 1868–191...

 

Fictional dog For other uses, see Benji (disambiguation). Fictional character BenjiBenji (portrayed by Benjean) in 1979First appearanceBenji (1974)Last appearanceBenji (2018)Created byJoe CampPortrayed byHiggins, Benjean, Moochie, Fairfield, Sally Sue, OdolaVoiced byChevy Chase (Oh! Heavenly Dog)In-universe informationSpeciesDogGenderMale Benji is a fictional canine character created by Joe Camp. He has been the focus of several feature films and other media, beginning with the independently ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bukit Antarabangsa – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message) Bukit Antarabangsa is a hillside township located in Ulu Klang, Ampang District, Selangor, Malaysia. The area is well known for be...

الرابطة الوطنية لرياضة الجامعات (بالإنجليزية: National Collegiate Athletic Association)‏، و(بالإنجليزية: Intercollegiate Athletic Association of the United States)‏  شعار الرابطة الاسم المختصر NCAA الرياضة كرة القدم الأمريكية،  وكرة السلة،  وكرة القاعدة،  والكرة الطائرة الشاطئية،  وبولينج بعشرة دبابيس، &...

 

Church in Ohio, USAAll Saints Parish and SchoolAll Saints Parish and SchoolShow map of OhioAll Saints Parish and SchoolShow map of the United StatesLocation Cincinnati, Ohio, USADenominationRoman CatholicWebsiteallsaints.ccHistoryFounded1837AdministrationDioceseArchdiocese of CincinnatiClergyMinister(s)Fr. Dennis Jaspers All Saints Catholic Church was located at Goodlow Street opposite Kemper Lane (East Third Street) in Cincinnati, Ohio and was once known as Christ Church. The parish was orga...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Saga novel – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions....

2014 Filipino filmRuined HeartFilm posterPusong WazakDirected byKhavnWritten byKhavnProduced byStephan HollAchinette VillamorStarringTadanobu AsanoNathalia AcevedoElena KazanPaul Andre PuertollanoVim NaderaCinematographyChristopher DoyleEdited byCarlo Francisco ManatadProductioncompaniesRapid Eye MoviesKamias OvergroundDistributed byStray DogsRelease dates October 2014 (2014-10) (Tokyo International Film Festival) March 26, 2015 (2015-03-26) (Germany) August&#...

 

Professor Green discographyProfessor Green in March 2012Studio albums3Music videos30EPs3Singles22Mixtapes1 The discography of British rapper Professor Green consists of three studio albums, three extended plays, twenty-two singles and thirty music videos. Professor Green released his first extended play, The Green EP, in November 2008 independently. The first single, I Need You Tonight, debuted at number three on the UK Singles Chart and number fifteen in Ireland in April 2010. The EP's secon...

 

Australian basketball player Adam GibsonGibson in September 2014Personal informationBorn (1986-10-30) 30 October 1986 (age 37)Launceston, Tasmania, AustraliaListed height188 cm (6 ft 2 in)Listed weight93 kg (205 lb)Career informationHigh schoolProspect (Launceston, Tasmania)Playing career2005–2022PositionGuardCareer history2005–2008Brisbane Bullets2006Hobart Chargers2007–2008Southern Districts Spartans2008–2009South Dragons2009Northside Wizards2009–2012...

Salt content in the soil Visibly salt-affected soils on rangeland in Colorado. Salts dissolved from the soil accumulate at the soil surface and are deposited on the ground and at the base of the fence post. Saline incrustation in a PVC irrigation pipe from Brazil Soil salinity is the salt content in the soil; the process of increasing the salt content is known as salinization.[1] Salts occur naturally within soils and water. Salination can be caused by natural processes such as minera...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بطولة إفريقيا لألعاب القوى 1992معلومات عامةالرياضة ألعاب القوى البلد موريشيوس المكان Belle Vue Harel (en) Stade Anjalay (...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!