Read other articles:
Anggika BölsterliS.I.Kom.LahirAnggika Sri Bölsterli21 Juni 1995 (umur 28)Jakarta, IndonesiaAlmamaterSTIKOM The London School of Public RelationsPekerjaanPemeranmodelTahun aktif2013—sekarangTanda tangan Anggika Sri Bölsterli (lahir 21 Juni 1995) adalah pemeran dan model asal Indonesia keturunan Swiss-Jawa. Ia dikenal luas berkat perannya dalam serial Putri Duyung. Kehidupan awal Anggika lahir dengan nama Anggika Sri Bölsterli pada 21 Juni 1995 di Jakarta, Indonesia.[1] ...
العلاقات الإسبانية البيلاروسية إسبانيا روسيا البيضاء إسبانيا روسيا البيضاء تعديل مصدري - تعديل العلاقات الإسبانية البيلاروسية هي العلاقات الثنائية التي تجمع بين إسبانيا وروسيا البيضاء.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومر
Sophie CooksonCookson di San Diego Comic Con 2014Lahir15 Mei 1990 (umur 33)Haywards Heath, West Sussex, InggrisPekerjaanAktrisTahun aktif2013–sekarang Sophie Louise Cookson (lahir 15 Mei 1990)[1] adalah seorang aktris asal Inggris. Ia dikenal karena memerankan agen rahasia Roxanne Roxy Morton / Lancelot dalam film mata-mata tahun 2014 Kingsman: The Secret Service dan sekuel tahun 2017 The Golden Circle. Referensi ^ Halligan, Fionnulla (June 5, 2014). Sophie Cookson, UK Sta...
群馬県道134号新田町新後閑線(ぐんまけんどう134ごう しんでんまちしごかせん)は、群馬県高崎市の市街地を走る短い一般県道である。 概要 かつて国道17号がたどっていたルートである。短いながらも全線4車線で整備されているが、途中に上信電鉄線の踏切がある。 路線データ 起点:高崎市新田町 (群馬県道25号高崎渋川線〈新田町交差点〉)[注釈 1] 終点:高
Capitolio provincial de Negros Occidental Monumento Histórico Nacional LocalizaciónPaís FilipinasUbicación BacólodCoordenadas 10°40′35″N 122°57′03″E / 10.67649, 122.95094Información generalDeclaración 19 de julio de 2004Construcción 1933[editar datos en Wikidata] El Capitolio Provincial de Negros Occidental es la sede del gobierno provincial de Negros Occidental ubicado en Bacólod, Filipinas. Dentro de su complejo se encuentra el Parque del Capitol...
Königreich Ungarn Magyar Királyság 1920–1946 Flagge Wappen Wahlspruch: Regnum Mariae Patrona Hungariae Staatsgebiet Ungarns 1942 Amtssprache UngarischAnerkannte Regionalsprache: Russinisch (in Transkarpatien)[1] Hauptstadt Budapest Staats- und Regierungsform Konstitutionelle Monarchie Staatsoberhaupt König (vakant)1Reichsverweser Miklós Horthy (1920–1944)Hoher Nationalrat (1945–1946) Regierungschef Ministerpräsident Einwohnerzahl 7.980.143 (1920)8.688.319 (1930)14.6...
Irish former Labour Party politician (b. 1953) Not to be confused with Kathleen Lynn. Kathleen LynchLynch in 2013Minister of State2011–2016Health2011–2014Justice and EqualityTeachta DálaIn officeMay 2002 – February 2016In officeNovember 1994 – June 1997ConstituencyCork North-Central Personal detailsBorn (1953-06-07) 7 June 1953 (age 70)Cork, IrelandPolitical partyLabour PartyOther politicalaffiliationsDemocratic LeftWorkers' PartySpouseBernard LynchChildren4Alm...
Television channel OBNCountryBosnia and HerzegovinaBroadcast areaWorldwide via SatelliteNetworkBroadcast Television NetworkOwnershipOwnerIvan Ćaleta (100%)HistoryLaunched23 July 1996 (1996-07-23)LinksWebsitewww.obn.ba OBN (abbreviation of Open Broadcast Network) is a local television network broadcasting a TV channel in Bosnia and Herzegovina. Headquarters of this TV is in Sarajevo, Pofalići neighborhood. OBN originally stood for Open Broadcast Network, when the company was f...
German composer (1894–1964) Memorial plaque for the filmmusic composer Genter in Neustadt am Rennsteig Willy Schmidt-Gentner (6 April 1894 – 12 February 1964) was one of the most successful German composers of film music in the history of German-language cinema. He moved to Vienna in 1933. At his most productive, he scored up to 10 films a year, including numerous classics and masterpieces of the German and Austrian cinema. Life Schmidt-Gentner was born in Neustadt am Rennsteig in Thuring...
State of working for oneself rather than an employerThe examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (September 2023) (Learn how and when to remove this template message) Self-employment is the state of working for oneself rather than an employer. Tax authorities will generally view a person as self-employed if the person chooses to be recog...
Mumbai Fintech HubMumbai Fintech Hub's LogoAbbreviationMFHFormation2018HeadquartersMumbai, Maharashtra, IndiaRegion Mumbai Metropolitan RegionFieldsFintechKey peopleAseemkumar Gupta, IAS (Chairman) Jayashree Bhoj, IAS (Managing director)Parent organizationGovernment of MaharashtraWebsitefintech.maharashtra.gov.in The Mumbai Fintech Hub is an investment platform, which was started by the Government of Maharashtra in the Mumbai Metropolitan Region.[1][2] It is an initiative by t...
Species of mammal White-nosed coati at Tikal, Guatemala Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Procyonidae Genus: Nasua Species: N. narica Binomial name Nasua narica(Linnaeus, 1766) Subspecies[2] N. n. narica (Linnaeus, 1766) N. n. molaris Merriam, 1902 N. n. nelsoni Merriam, 1901 N. n. yucatanica J. A. Allen, 1904 The native range of ...
Algebraic structure → Group theoryGroup theory Basic notions Subgroup Normal subgroup Quotient group (Semi-)direct product Group homomorphisms kernel image direct sum wreath product simple finite infinite continuous multiplicative additive cyclic abelian dihedral nilpotent solvable action Glossary of group theory List of group theory topics Finite groups Cyclic group Zn Symmetric group Sn Alternating group An Dihedral group Dn Quaternion group Q Cauchy's theorem Lagrange's theorem Sylow the...
Untuk ibu kota Afrika Selatan, lihat Pretoria. Romawi Kuno Artikel ini adalah bagian dari seri Politik dan KetatanegaraanRomawi Kuno Zaman Kerajaan Romawi753–509 SM Republik Romawi509–27 SM Kekaisaran Romawi27 SM – 395 M Principatus Dominatus Wilayah Barat395–476 M Wilayah Timur395–1453 M Lini Masa Konstitusi Romawi Konstitusi Zaman Kerajaan Konstitusi Zaman Republik Konstitusi Zaman Kekaisaran Konstitusi Akhir Zaman Kekaisaran Senatus Sidang Legislatif Magistratus Eksekutif Presede...
Chemical compound NalodeineClinical dataOther namesN-AllylnorcodeineIdentifiers IUPAC name (4R,4aR,7S,7aR,12bS)-9-methoxy-3-prop-2-enyl-2,4,4a,7,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol CAS Number56195-50-7 YPubChem CID5486632ChemSpider4588998UNIIYD9M6BEL6SChemical and physical dataFormulaC20H23NO3Molar mass325.408 g·mol−13D model (JSmol)Interactive image SMILES COC1=C2C3=C(CC4C5C3(CCN4CC=C)C(O2)C(C=C5)O)C=C1 InChI InChI=1S/C20H23NO3/c1-3-9-21-10-8-20-13-5...
Character from Brokeback Mountain Fictional character Ennis Del MarEnnis Del Mar as portrayed by Heath LedgerFirst appearanceBrokeback MountainCreated byAnnie ProulxPortrayed byHeath Ledger (film) Lucas Hedges (play)In-universe informationGenderMaleOccupationSheep herder, ranch handSpouseAlma BeersChildrenAlma Jr. Jenny (Francine in short story)RelativesK.E. (brother) Unnamed sister Ennis Del Mar[nb 1] is the fictional main character of the short story Brokeback Mountain by Annie Prou...
Paperino in tribunaleTitolo originaleTitolo originaleThe Trial of Donald Duck Lingua originaleinglese, francese Paese di produzioneStati Uniti d'America Anno1948 Durata6 min c.ca Rapporto1,37:1 Genereanimazione, commedia RegiaJack King SceneggiaturaDan MacManus ProduttoreWalt Disney Casa di produzioneWalt Disney Productions Distribuzione in italianoBuena Vista Distribution MusicheOliver Wallace ScenografiaDon Griffith AnimatoriEd Aardal, Fred Kopietz, Paul Allen, Jack Boyd SfondiMerle Cox...
Akademi Peternakan KaranganyarNama lainApeka KaranganyarJenisPerguruan Tinggi SwastaDidirikan17 Juni 1985DirekturIr. Puji Astuti, M.P.AlamatJl. Lawu No.115, Bejen, Karanganyar, Kabupaten Karanganyar, Jawa Tengah, 57716, IndonesiaBahasaBahasa IndonesiaSitus webapeka-karanganyar.ac.id Akademi Peternakan Karanganyar (disingkat Apeka Karanganyar) adalah salah satu universitas swasta di Indonesia yang berlokasi di Kabupaten Karanganyar, Provinsi Jawa Tengah. Universitas ini dikelola oleh Yayasan P...
Solida toro En matematiko, solida toro estas tri-dimensia topologia spaco homeomorfa al S 1 × D 2 {\displaystyle S^{1}\times D^{2}} , do la kartezia produto de cirklo kun du-dimensia disko laŭ la produta topologio. Kutima maniero bildi solidan toron estas montri ĝin kiel toro. Ĉi tiu artikolo ankoraŭ estas ĝermo pri matematiko. Helpu al Vikipedio plilongigi ĝin. Se jam ekzistas alilingva samtema artikolo pli disvolvita, traduku kaj aldonu el ĝi (menciante la fonton).
K129/130次旅客列车原T129次列车水牌(2023年4月)概述开行日期1997年4月1日所属铁路局沈阳铁路局担当客运段大连客运段当前车次K129/130次曾用车次507/508次2019/2020次T129/130次列车等级快速列车运行区间大连站 ↔ 齐齐哈尔站主要停站鞍山站、瀋陽站、沈阳北站四平站、长春站、哈尔滨站大庆站、大庆西站运行时间15小时45分(K129次)15小时51分(K130次)发车时间大连站:18:35齐齐...