Конволуција функција је функција
Конволуција функција се често означава са
Примери појављивања
Литература
- Bracewell, R. (1986). „The Fourier Transform and Its Applications” (2nd изд.). McGraw–Hill. ISBN 9780071160438. .
- Hewitt Edwin, Ross Kenneth A. (1979). Abstract harmonic analysis. Vol. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 115 (2nd изд.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-09434-0. MR 551496. .
- Hewitt Edwin, Ross Kenneth A. (1970). Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischen Wissenschaften, Band 152. Berlin, New York: Springer-Verlag. MR 0262773. .
- The analysis of linear partial differential operators I. Grundl. Math. Wissenschaft. 256. Springer. 1983. ISBN 978-3-540-12104-6. MR 0717035. .
- Christian, Kassel (1995). Quantum groups. Graduate Texts in Mathematics. 155. Berlin, New York: Springer-Verlag. ISBN 978-0-387-94370-1. MR 1321145. .
- Knuth, Donald (1997). Seminumerical Algorithms (3rd. изд.). Reading, Massachusetts: Addison–Wesley. ISBN 978-0-201-89684-8. .
- Walter, Rudin (1962). Fourier analysis on groups. Interscience Tracts in Pure and Applied Mathematics, No. 12. Interscience Publishers (a division of John Wiley and Sons), New York–London. ISBN 9780471523642. MR 0152834. .
- Elias Stein, Guido Weiss (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press. ISBN 978-0-691-08078-9. .
- Strichartz, R. (1994). A Guide to Distribution Theory and Fourier Transforms. CRC Press. ISBN 9780849382734. .
- Edward, Titchmarsh (1948). Introduction to the theory of Fourier integrals (2nd изд.). New York, N.Y.: Chelsea Pub. Co. (објављено 1986). ISBN 978-0828403245. .
- M., Uludag A. (1998). „On possible deterioration of smoothness under the operation of convolution”. J. Math. Anal. Appl. 227 no. 2, 335–358.
- Treves, François (1967). Topological Vector Spaces, Distributions and Kernels. Academic Press. ISBN 9780486453521. .
- von zur Gathen, J.; Gerhard, J. (2003). Modern Computer Algebra. Cambridge University Press. ISBN 978-0-521-82646-4. .
- J., Diggle P. (1995). „A kernel method for smoothing point process data”. Journal of the Royal Statistical Society, Series C) 34 (1985) 138–147.
Спољашње везе