Fermatov mali izrek

Fermatov máli izrèk ali tudi máli Fermatov izrèk [fermájev ~] pravi, da kadar je p praštevilo, potem za vsako celo število a velja:

To pomeni, da kadar vzamemo poljubno celo število a in ga pomnožimo s samim seboj p krat in odštejemo a, bomo dobili število, ki bo deljivo s p. (glej mudularna aritmetika). Imenujemo ga Fermatov mali izrek, da ga ločimo od Fermatovega velikega izreka. Pierre de Fermat je našel izrek okoli leta 1636. Izrek se je pojavil v enem od njegovih pisem svojemu zaupniku Frénicleu datiranem 18. oktobra 1640 v naslednji obliki: p deli ap-1 - 1 kadar je p praštevilo in a je p tuje ali:

Primer za a = 2 so poznali že stari Kitajci. Zgled za osnovo 2:

in ostanek pri deljenju:

kjer je D() največji skupni delitelj. In za osnovo 3:

Števila:

so Fermatovi količniki za osnovo a. Prvi Fermatovi količniki za osnovo 2 so (OEIS A007663):

1, 3, 9, 93, 315, 3855, 13797, 182361, 9256395, 34636833, 1857283155, ...

Dokaz

Fermat je pojasnil svoj izrek brez dokaza. Prvi ga je dokazal Gottfried Wilhelm Leibniz v svojem rokopisu brez datuma, kjer je tudi zapisal, da je poznal dokaz že pred letom 1683.

Dokaz »malega izreka« je enostaven in osnoven. Uporabimo lahko matematično indukcijo. Pokažemo da izrek velja za a = 1. Če izrek velja za a = k, lahko pokažemo, da velja tudi za a = k + 1 in s tem za vse a.

Potrebujemo naslednjo lemo:

(a + b)p mod p = ap + bp mod p

kadar je p praštevilo. Binomski izrek nam pove:

Tukaj je = p(p - 1)(p - 2)(p - 3) ... (p - (i-1)) / i! če 0 < i < p. Ker je i manjši od p in je p praštevilo, i! ne deli p, zato je celotni člen aibp-i mnogokratnik p če 0 < i < p. To pomeni, da je celotna vsota od i = 1 do i = p - 1 enaka 0 mod p. Tako je (a + b)p mod p v resnici enako ap + bp mod p, kadar je p praštevilo.

  1. Očitno je ap mod p = a pri a = 1.
  2. Predpostavimo sedaj, da pri a = k izrek velja. S tem predpostavimo kp mod p = k kadar je k < p in poglejmo, kaj se zgodi pri a = k + 1:
(k + 1)p mod p =
(pokažemo s trditvijo spodaj)
kp + 1p mod p = kp + 1 mod p.
Ker smo predpostavili da velja kp mod p = k pri k < p, sklepamo, da velja (k + 1)p mod p = k + 1, kadar je k + 1 < p, kar smo hoteli dokazati.

Posplošitve

Fermatov mali izrek posplošimo z Eulerjevim izrekom: za poljuben modul n in poljubno celo število a tuje n, imamo

kjer je φ(n) Eulerjeva funkcija, ki šteje vsa cela števila med 1 in n, ki so n tuja. To je zares posplošitev, ker, če je n = p praštevilo, potem φ(p) = p - 1.

To lahko še naprej posplošimo s Carmichaelovim izrekom.

Psevdopraštevila

Če sta a in p dve takšni tuji števili, da velja ap-1 - 1 | p, potem p nujno ni praštevilo. Če p ni praštevilo, se imenuje Fermatovo psevdopraštevilo za bazo a. Število p, ki je psevdopraštevilo za bazo a za vsako število a tuje n, se imenuje Carmichaelovo število.

Read other articles:

Grand Prix Sepeda Motor F.I.M. musim 2017 Sebelum: 2016 Sesudah: 2018 MotoGP musim 2017Moto3 musim 2017 Franco Morbidelli mengamankan Kejuaraan Pembalap di Grand Prix Malaysia. Kejuaraan Dunia FIM Moto2 2017 adalah bagian dari musim Kejuaraan Dunia F.I.M. ke-69. Musim ini dirusak oleh kematian Stefan Kiefer, kepala Kiefer Racing, di Malaysia. Johann Zarco adalah juara bertahan seri dua kali, tetapi dia tidak lagi mempertahankan gelarnya saat dia bergabung dengan kelas utama seri, MotoGP. Musi...

 

Cocina jamaicana típico desayuno de la isla: akí y bacalao con calalú y dumplingss fritosTerritorio:  JamaicaSistema culinario: caribeño[editar datos en Wikidata] La gastronomía de Jamaica es un conjunto de técnicas culinarias, sabores, especias de los indígenas de la isla de Jamaica y las influencias de españoles, irlandeses, británicos, africanos, indios y chinos que han habitado la isla. También está influenciado por los cultivos introducidos en la isla desde el S...

 

Chronologies Données clés 1966 1967 1968  1969  1970 1971 1972Décennies :1930 1940 1950  1960  1970 1980 1990Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, Centrafrique, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égypte, Érythrée,...

Der Chelmos-Vouraikos UNESCO Global Geopark befindet sich im nördlichen Teil der Peloponnes in Griechenland. Er verfügt über zahlreiche Geotope von besonderem wissenschaftlichen Wert[1]. Dazu gehören u. a. Flüsse, Seen, die gesamte Kette des Chelmos-Gebirges sowie die Vouraikos-Schlucht[2]. Das Gebiet erstreckt sich über die Provinzen Achaia bis Korinthia. Mit einer Fläche von 654 km²[3] umfasst es 62 Gemeinden mit insgesamt 27125 Einwohnern[4]. Gebirgs...

 

For the number, see 19 (number). 1971 live album by Mal WaldronNumber NineteenLive album by Mal WaldronReleased1971RecordedMay 30, 1971GenreJazzLength43:14LabelFreedom (Japan)ProducerAlan BatesMal Waldron chronology First Encounter(1971) Number Nineteen(1971) Black Glory(1971) Number Nineteen is an album by American jazz pianist Mal Waldron featuring a performance recorded in Baarn, Holland in 1971 and released on the Freedom label.[1] Track listing All compositions by Mal Wal...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2021) صامويل سيتا   معلومات شخصية الميلاد 18 ديسمبر 1942  إقليم تنجانيقا  [لغات أخرى]‏  الوفاة 7 نوفمبر 2016 (73 سنة)   ميونخ  مواطنة تنزانيا  مناصب ال...

1970 song by George Harrison All Things Must PassCover of the original Hansen Publishing sheet music for the songSong by George Harrisonfrom the album All Things Must Pass Released27 November 1970GenreFolk rockLength3:47LabelAppleSongwriter(s)George HarrisonProducer(s)George Harrison, Phil Spector All Things Must Pass is a song by English rock musician George Harrison, issued in November 1970 as the title track to his triple album of the same name. Billy Preston released the song originally ...

 

1975 studio album by Bruce Springsteen For the song, see Born to Run (Bruce Springsteen song). For other uses, see Born to Run (disambiguation). Born to RunStudio album by Bruce SpringsteenReleasedAugust 25, 1975 (1975-08-25)RecordedMay 1974 – July 1975Studio914 (Blauvelt, New York)The Record Plant (New York City)Genre Rock and roll pop rock[1] power pop[1] Length39:23LabelColumbiaProducerBruce Springsteen · Mike Appel · Jon LandauBruce Springsteen chron...

 

Abiyoso Seno AjiWakil Kepala Kepolisian Daerah Jawa TengahPetahanaMulai menjabat 1 Mei 2020PendahuluAhmad Luthfi Informasi pribadiLahir25 Oktober 1970 (umur 53)Surakarta, Jawa TengahAlma materAkademi Kepolisian (1992)Karier militerPihak IndonesiaDinas/cabang Kepolisian Daerah Jawa TengahMasa dinas1992—sekarangPangkat Brigadir Jenderal PolisiNRP70100287SatuanBrigade MobilSunting kotak info • L • B Brigjen. Pol. Abiyoso Seno Aji, S.I.K. (lahir 25 Oktober 1970)...

Gold LineA Gold Line train on the viaduct north of Arts Center stationOverviewStatusOperationalLocaleAtlanta, GeorgiaTerminiDoraville (northeast)Airport (south)Stations18 (4 Northeast, 6 North, Five Points, 7 South)ServiceTypeRapid transitSystemMARTA railOperator(s)MARTARolling stockSee MARTA rail#Rolling stockHistoryOpened1981TechnicalCharacterat grade, elevated, undergroundTrack gauge4 ft 8+1⁄2 in (1,435 mm) standard gaugeElectrificationThird rail, 750 V&...

 

This is a list of major football stadiums, grouped by country and ordered by capacity. It does not include American Football stadiums in the USA that are also used for association football. This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources. Etihad Stadium Albania Main article: List of football stadiums in Albania Stadium Capacity Club Arena Kombëtare 22,500 Albania national football team L...

 

Mexican stock exchange Mexican Stock ExchangeBolsa Mexicana de ValoresFront of the Mexican Stock Exchange Buildings in 2008.TypeStock exchangeLocationMexico City, MexicoCoordinates19°26′N 99°8′W / 19.433°N 99.133°W / 19.433; -99.133Founded5 September 1933; 90 years ago (1933-09-05)OwnerBMV GroupCurrencyMexican pesoNo. of listings140[1]Market capUSD 530 billion (July 2020)[2]BOLSAAVolumeUSD 134.86 billion (Jan-Dec 2015...

World Championship Wrestling pay-per-view event Halloween HavocVHS cover featuring Sting and Sid ViciousPromotionNational Wrestling Alliance: World Championship WrestlingDateOctober 27, 1990CityChicago, IllinoisVenueUIC PavilionAttendance8,000Tagline(s)Terror Rules the RingPay-per-view chronology ← PreviousThe Great American Bash Next →Starrcade Halloween Havoc chronology ← Previous1989 Next →1991 The 1990 Halloween Havoc was the second annual Halloween Havoc profe...

 

Halaman ini berisi artikel tentang cabang biologi. Untuk praktik pengawetan jasad hewan dengan penjejalan dan penopangan, lihat Taksidermi. Dengan munculnya bidang studi seperti filogenetik, kladistik, dan sistematika, sistem taksonomi Carolus Linnaeus telah berkembang menjadi sistem klasifikasi biologis modern berdasarkan hubungan evolusi antar organisme, baik organisme hidup maupun yang sudah punah.[1] Definisi Definisi taksonomi yang tepat bervariasi dari satu sumber dengan sumber ...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Befrienders Worldwide – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this template message) Befrienders Worldwide is a charity that helps people who are considering suicide or experiencing general emotional distress. They have 349 emotional support centres in 32 ...

Body of Adventist Christians This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Advent Christian Church – news · newspapers · books · scholar · JSTOR (June 2018) (Learn how and when to remove this template message) Advent Christian Church(Advent Christian General Conference)AbbreviationACGC[1]Classifica...

 

1947 noir drama film directed by Edward Dmytryk This article is about the 1947 film. For other uses, see Crossfire (disambiguation). CrossfireTheatrical release posterDirected byEdward DmytrykScreenplay byJohn PaxtonBased onThe Brick Foxhole1945 novelby Richard BrooksProduced byAdrian ScottStarringRobert YoungRobert MitchumRobert RyanGloria GrahameSam LeveneCinematographyJ. Roy HuntEdited byHarry GerstadMusic byRoy WebbProductioncompanyRKO Radio PicturesDistributed byRKO Radio PicturesRelease...

 

2018 Indian filmLolansDirected bySalim BabaScreenplay bySanthosh RamStory byK. P. SuneerProduced byK. P. SuneerStarringNishanCarolinaP. BalachandranCinematographyShaji JacobEdited byK. SreenivasanMusic byAnwar AmanProductioncompanyKaruparamban FilmsRelease date 23 March 2018 (2018-03-23) CountryIndiaLanguageMalayalam Lolans is a 2018 Indian Malayalam-language film directed by Salim Baba and produced by K. P. Suneer. The screenplay was written by Santhosh Ram from a st...

Regional divisions in Punjab 23 districts of Punjab along with their headquarters as of 2023. A district of the Punjab state of India is an administrative geographical unit, headed by a District Magistrate or Deputy Commissioner, an officer belonging to the Indian Administrative Service. The District Magistrate or the Deputy Commissioner is assisted by a number of officers belonging to Punjab Civil Service and other state services. There are 23 Districts in Punjab, after Malerkotla district b...

 

Pour les articles homonymes, voir Amérique (homonymie), Amérique du Nord (homonymie), Amérique septentrionale et Amérique centrale. Amérique du Nord Carte de localisation de l'Amérique du Nord. Superficie 24 930 000 km2 Population 491 921 432 hab. Densité 20 hab./km2 Pays 23 Principales langues Anglais, Français, Espagnol, Suédois, Danois, Groenlandais, langues autochtones du continent américain Fuseaux horaires UTC-3 à UTC-10 ( États-Unis) Princ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!