V geometriji in kristalogarfiji je Bravaisova mreža neskončen niz točk, ki jih generira niz diskretnih translacijskih operacij, zapisanih z enačbo:
R = n1a1 + n2a2 + n3a3
ni so poljubna cela števila, ai pa osnovni vektorji, ki ležijo na različnih ravninah in povezujejo mrežo. Mreža je v katerem koli položaju vektorja R popolnoma enaka.
Kristal je zgrajen iz istovrstnih ali raznovrstnih atomov, ki se ponavljajo v vsaki mrežni točki. Kristal, gledan iz katere koli mrežne točke, izgleda popolnoma enako.
Bravaisovi mreži se pogosto obravnavata kot ekvivalentni, če imata izomorfno simetrijsko grup. V tridimenzionalnem prostoru je v tem smislu možnih 14 Bravaisovih mrež. 14 možnih simetrijskih grup Bravaisovih mrež je 14 od 230 prostorskih grup.
Bravaisove mreže v največ dveh dimenzijah
V 0-dimenzionalnem in 1-dimenzionalnem prostoru sta samo po ena Bravaisova mreža. V 2-dimenzionalnem prostoru je pet Bravaisovih mrež: poševna, pravokotna, centrirano pravokotna, heksagonalna in kvadratna.[2]
Bravaisove mreže v treh dimenzijah
V treh dimenzijah je 14 Bravaisovih mrež, ki nastanejo s kombiniranjem sedmih mrežnih (aksialnih) sistemov s centriranji mreže.
Mreža ima lahko naslednja centriranja:
enostavno centriranje (P): mrežne točke so samo na ogliščih osnovne celice
telesno centriranje (I): dodatna mrežna točka je v središču celice
ploskovno centriranje (F): po ena dodatna mrežna točka je v središču vsake ploskve celice
centriranje na samo eni ploskvi (centriranje A, B ali C): dodatna mrežna točka je v središču ene od ploskev celice
Za opis mrež niso potrebne vse kombinacije kristalnih sistemov in centriranj. Celotno število možnih kombinacij je 7 × 6 = 42, vendar je med njimi nekaj takih, ki so enakovredne. Monoklinsko mrežo I se na primer lahko z drugačno izbiro kristalnih osi opiše kot monoklinsko mrežo C. Na podoben način se vse A- ali B-centrirane mreže lahko opišejo s centriranjem C- ali P-. Število kombinacij se zato zmanjša na 14 Bravaisovih mrež, ki so prikazane v naslednji preglednici.
Volomen osnovne celice se izračuna z enačbo a • b × c, pri čemer so a, b in c mrežni vektorji. Bravaisove mreže imajo naslednje volumne:
Mrežni sistem
Enačba za izračun prostornine
Triklinski
Monoklinski
Ortorombski
Tetragonalni
Romboedrični
Heksagonalni
Kubični
Bravaisove mreže v štirih dimenzijah
V štirih dimenzijah je 52 Bravaisovih mrež. 21 mrež je osnovnih, 31 pa centriranih.[3]
Sklici
↑Aroyo, Mois I.; Ulrich Müller and Hans Wondratschek (2006). »Historical Introduction«. International Tables for Crystallography (Springer) A1 (1.1): 2–5. doi:10.1107/97809553602060000537. http://it.iucr.org/A1a/ch1o1v0001/sec1o1o1/Arhivirano 2013-07-04 at Archive.is. Pridobljen 2008-04-21.