Daljice od razpolovišč nasprotnih stranic do presečišč pravokotnic in stranic v štirikotniku se imenujejo sredinskevišine (maltitude).
Velja tudi obrat izreka: če v štirikotniku sredinske višine tvorijo šop premic, je štirikotnik tetiven in ortodiagonalen. Presečišče šopa se imenuje protisredišče (anticenter) in protisredišče sovpada s presečiščem diagonal.
V splošnejšem primeru v tetivnem štirikotniku sredinske višine še vedno tvorijo šop premic, vendar diagonali nista več pravokotni in tetivni štirikotnik ni tudi ortodiagonalen, protisredišče pa ne sovpada s presečiščem diagonal. V tetivnem štirikotniku njegovo težišče leži na polovici med protisrediščem in središčem očrtane krožnice in tudi na Newton-Gaussovi premici.