is about 6.67430×10−11 N⋅m2/kg2,[1] and is denoted by letter . In the SI system, the constant is equal to the force in newtons that two objects, each with a mass of 1 kilogram, exert on each other at a distance of 1 meter.
It usually appears in Sir Isaac Newton's law of universal gravitation, and in Albert Einstein's general theory of relativity. It is also known as the universal gravitational constant, Newton's constant, and colloquially as Big G.[2] It should not be confused with "small g" (g), which is the local gravitational field of the Earth (equivalent to the free-fall acceleration).[3]
↑Gundlach, Jens H.; Merkowitz, Stephen M. (2002-12-23). "University of Washington Big G Measurement". Astrophysics Science Division. Goddard Space Flight Center. Since Cavendish first measured Newton's Gravitational constant 200 years ago, "Big G" remains one of the most elusive constants in physics.
↑Halliday, David; Walker, Jearl; Resnick, Robert (2007). WIE ASE Fundamentals of Physics Extended, Eighth Edition, Asian Student Edition. p. 336. ISBN978-0-470-04618-0.