Схема с разностями против потока в вычислительной физике — класс методов дискретизации для решения (явными схемами) дифференциальных уравнений в частных производных гиперболического типа (гиперболических уравнений).
Например, одномерное уравнение волны имеет вид
Оно описывает распространение волны в направлении со скоростью . Такое уравнение также является математической моделью одномерной линейной адвекции. Рассматривая обыкновенную точку сетки , в одномерном случае есть только два допустимых направления, левое и правое. Если положительна, то левая сторона называется направлением против потока, а правая сторона называется направлением по потоку. (Если отрицательна, то наоборот). Если при использовании конечных разностей для пространственной производной содержит больше точек на стороне против потока, то схема называется схемой с разностями против потока[1].
Первого порядка
Простейший пример, пример первого порядка:[2]
Компактная форма
Определяя
- ,
два условных уравнения (1) и (2) можно записать в одном:
Такое уравнение представляет схемы с разностями против потока в общем виде. Стабильность схемы с разностями против потока определяется критерием Куранта — Фридрихса — Леви.[3]
Источники