Субкори́чневый ка́рлик или кори́чневый субка́рлик — небесное тело, формировавшееся так же, как и звёзды и коричневые карлики (то есть гравитационным коллапсом газового облака, а не аккрецией), но с массой, меньшей, чем необходимая масса для запуска термоядерных реакций.
Хотя эти объекты формируются тем же путём, что и звёзды, пока что нет единого мнения, считать эти объекты звёздами или же планетами[1]. Их температуры и светимости настолько малы, что зачастую коричневые субкарлики неотличимы от планет. Классификация объекта, превышающего массу Юпитера, но уступающего коричневому карлику, зависит от того, является ли он спутником звезды, или нет. В последнем случае такой объект и называют субкоричневым карликом[2].
Такое же определение дал Международный астрономический союз (объекты, в которых не идут термоядерные реакции и не связанные со звёздами — субкоричневые карлики, а иначе — планеты, вне зависимости от механизма формирования)[3].
Верхним пределом по массе считается 0,012 масс Солнца или, соответственно, 12,57 массы Юпитера[4][5]. Нижний предел точно не определён, но считается, что такой объект может образоваться при изначальной массе облака не менее массы Юпитера[6]. В статье 2007 года был описан объект с массой в 3 массы Юпитера[7].
Светимость и размеры объектов
Для субкоричневых карликов, поскольку они не могут получать теплоту от термоядерных реакций, высвечивание энергии происходит в результате гравитационного сжатия объекта. Поскольку сжатие в конечном счёте прекращается, субкоричневый карлик всё больше остывает. Максимальная температура, которой может достигать объект, зависит от массы, и для самых тяжёлых субкоричневых карликов достигает 1500 К. Конечный диаметр субкоричневого карлика в процессе его развития мало зависит от массы и несколько меньше диаметра Юпитера. Низкая температура субкоричневых карликов затрудняет их наблюдение; самая малая температура, при которой такие объекты были обнаружены по излучению, составляет 500 К, однако с расстояния в 2 пк теоретически возможно обнаружение субкарлика с температурой 250 К[8].
Такая ситуация, когда планемо излучает значительно больше энергии, чем получает от своей звезды, наблюдается и в Солнечной системе: газовые гиганты благодаря продолжающемуся и поныне сжатию высвечивают дополнительную теплоту[9].
↑David S. Spiegel; Adam Burrows; John A. Milsom (2010). "The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets". v2. arXiv:1008.5150 [astro-ph]. {{cite arXiv}}: Неизвестный параметр |accessdate= игнорируется (справка) (англ.) — См. С. 2, 6.
↑G. Chabrier; I. Baraffe; F. Allard; P.H. Hauschildt (2005). "Review on low-mass stars and brown dwarfs". v1. arXiv:astro-ph/0509798. {{cite arXiv}}: |class= игнорируется (справка); Неизвестный параметр |accessdate= игнорируется (справка) (англ.) — См. С. 16. — Цитата: […]The distinction between BD and giant planets has become these days a topic of intense debate. In 2003, the IAU has adopted the deuterium-burning minimum mass, mDBMM ≃ 0.012M⊙ (Saumon et al. 1996, Chabrier et al. 2000b) as the official distinction between the two types of objects.[…] Перевод: […]Различие между коричневыми карликами и планетами-гигантами стало в настоящее время темой интенсивных дебатов. В 2003 году МАС принял минимальную массу, необходимую для горения дейтерия, mDBMM ≃ 0,012M⊙ (Saumon et al. 1996, Chabrier et al. 2000b) как официальное значение для различия между двумя типами объектов.[…]
↑Boss, Alan P.; Basri, Gibor; Kumar, Shiv S.; Liebert, James; Martín, Eduardo L.; Reipurth, Bo; Zinnecker, Hans (2003), "Nomenclature: Brown Dwarfs, Gas Giant Planets, and ?", Brown Dwarfs, 211: 529, Bibcode:2003IAUS..211..529B