Соответствие Карри — Ховарда (изоморфизм Карри — Ховарда, англ. formulæ-as-types interpretation) — наблюдаемая структурная эквивалентность между математическими доказательствами и программами, которая может быть формализована в виде изоморфизма между логическими системами и типизированными исчислениями.
Хаскелл Карри[1] и Уильям Ховард[англ.][2] заметили, что построение конструктивного доказательства похоже на описание вычислений, а высказывания конструктивной логики по своей структуре схожи с типами вычисляемых выражений — программ для вычислительной машины. Ранние проявления этой связи — интерпретация Брауэра — Гейтинга — Колмогорова[англ.] (1925), задающая семантику интуиционистской логики через вычисления доказательств, и теория реализуемости[англ.] Клини (1945).
Соответствие Карри — Ховарда в современном представлении не ограничивается какой-то одной логикой или системой типов. Например, логика высказываний соответствует простому типизированному λ-исчислению, логика высказываний второго порядка[англ.] — полиморфному λ-исчислению, исчисление предикатов — λ-исчислению с зависимыми типами.
В рамках изоморфизма Карри — Ховарда следующие структурные элементы рассматриваются как эквивалентные:
Логические системы |
Языки программирования
|
Высказывание |
Тип
|
Доказательство высказывания |
Терм (выражение) типа
|
Утверждение доказуемо |
Тип обитаем
|
Импликация |
Функциональный тип
|
Конъюнкция |
Тип произведения (пары)
|
Дизъюнкция |
Тип суммы (размеченного объединения)
|
Истинная формула |
Единичный тип
|
Ложная формула |
Пустой тип ()
|
Квантор всеобщности |
Тип зависимого произведения (-тип)
|
Квантор существования |
Тип зависимой суммы (-тип)
|
Простейшим примером соответствия Карри — Ховарда может служить изоморфизм между простым типизированным λ-исчислением и фрагментом интуиционистской логики высказываний, включающим только импликацию. Например, тип в простом типизированном лямбда-исчислении соответствует высказыванию логики высказываний. Для доказательства этого высказывания необходимо сконструировать терм указанного типа (если это удаётся сделать, то про тип говорят, что он обитаем или населён), в данном случае можно предъявить нужный терм: , и это значит, что тавтология доказана.
Использование изоморфизма Карри — Ховарда позволило создать целый класс функциональных языков программирования, среда выполнения которых одновременно является системой автоматического доказательства, таких как Coq, Agda и Epigram[англ.].
Примечания
- ↑
Curry, H. B., Feys, R. Combinatory Logic Vol. I. — Amsterdam: North-Holland, 1958.
- ↑
Howard, W. A. The formulae-as-types notion of construction // To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. — Boston: Academic Press, 1980. — С. 479–490.
Литература