Рекурсивная функция (теория вычислимости)

Термин рекурсивная функция в теории вычислимости используется для обозначения трёх классов функций:

Последние совпадают с классом вычислимых по Тьюрингу функций. Определения этих трёх классов сильно связаны. Они были введены Куртом Гёделем с целью формализации понятия вычислимости.

Множество частично рекурсивных функций включает в себя множество общерекурсивных функций, а общерекурсивные функции включают в себя примитивно рекурсивные функции. Частично рекурсивные функции иногда называют просто рекурсивными функциями.

Примитивно рекурсивная функция

Определение

Определение понятия примитивно рекурсивной функции является индуктивным. Оно состоит из указания класса базовых примитивно рекурсивных функций и двух операторов (суперпозиции и примитивной рекурсии), позволяющих строить новые примитивно рекурсивные функции на основе уже имеющихся.

К числу базовых примитивно рекурсивных функций относятся функции следующих трёх видов:

  • Нулевая функция — функция без аргументов, всегда возвращающая 0.
  • Функция следования одного переменного, сопоставляющая любому натуральному числу непосредственно следующее за ним натуральное число . Например, .
  • Функции , где , от n переменных, сопоставляющие любому упорядоченному набору натуральных чисел число из этого набора. Например, .

Операторы подстановки и примитивной рекурсии определяются следующим образом:

  • Оператор суперпозиции (иногда — оператор подстановки). Пусть — функция от m переменных, а — упорядоченный набор функций от переменных каждая. Тогда результатом суперпозиции функций в функцию называется функция от переменных, сопоставляющая любому упорядоченному набору натуральных чисел число
  • Оператор примитивной рекурсии. Пусть — функция от переменных, а — функция от переменных. Тогда результатом применения оператора примитивной рекурсии к паре функций и называется функция от переменной вида

В данном определении переменную можно понимать как счётчик итераций, — как исходную функцию в начале итерационного процесса, выдающего некую последовательность функций переменных, начинающуюся с , и — как оператор, принимающий на вход переменных , номер шага итерации , функцию на данном шаге итерации, и возвращающий функцию на следующем шаге итерации.

Множество примитивно рекурсивных функций — это минимальное множество, содержащее все базовые функции и замкнутое относительно указанных операторов подстановки и примитивной рекурсии.

В терминах императивного программирования — примитивно рекурсивные функции соответствуют программным блокам, в которых используется только арифметические операции, а также условный оператор и оператор арифметического цикла (оператор цикла, в котором число итераций известно на момент начала цикла). Если же программист начинает использовать оператор цикла while, в котором число итераций заранее неизвестно и, в принципе, может быть бесконечным, то он переходит в класс частично рекурсивных функций.

Примеры

Укажем на ряд широко известных арифметических функций, являющихся примитивно рекурсивными.

  • Функция Сложения двух натуральных чисел () может быть рассмотрена в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения оператора примитивной рекурсии к функциям и , вторая из которых получается подстановкой основной функции в основную функцию :
;
;
.
  • Умножение двух натуральных чисел () может быть рассмотрено в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения оператора примитивной рекурсии к функциям и , вторая из которых получается подстановкой основных функций и в функцию сложения:
;
;
.
  • Симметрическая разность (абсолютная величина разности) двух натуральных чисел () может быть рассмотрена в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения следующих подстановок и примитивных рекурсий:
;
;
;
;
;

Частично рекурсивная функция

Частично рекурсивная функция определяется аналогично примитивно рекурсивной, только к двум операторам, суперпозиции и примитивной рекурсии, добавляется ещё третий оператор — минимизации аргумента.

  • Оператор минимизации аргумента. Пусть — функция от n натуральных переменных. Тогда результатом применения оператора минимума аргумента к функции называется функция от переменной, задаваемая следующим определением:
, при условии
То есть функция возвращает минимальное значение последнего аргумента функции , при котором её значение равно 0.

Частично рекурсивные функции для некоторых значений аргумента могут быть не определены, так как оператор минимизации аргумента не всегда корректно определён, поскольку функция может быть не равной нулю ни при каких значениях аргументов. С точки зрения императивного программирования, результатом частично рекурсивной функции может быть не только число, но и исключение или уход в бесконечный цикл, соответствующие неопределённому значению.

Общерекурсивная функция

Общерекурсивная функция — частично рекурсивная функция, определённая для всех значений аргументов. Задача определения того, является ли частично рекурсивная функция с данным описанием общерекурсивной или нет, алгоритмически неразрешима.

Свойства

Легко понять, что любая примитивно рекурсивная функция является частично рекурсивной, так как по определению операторы для построения частично рекурсивных функций включают в себя операторы для построения примитивно рекурсивных функций.

Также понятно, что примитивно рекурсивная функция определена везде и поэтому является общерекурсивной функцией (у примитивно рекурсивной функции нет повода «зависать», так как при её построении используются операторы, определяющие везде определённые функции).

Довольно сложно доказать существование и привести пример общерекурсивной функции, не являющейся примитивно рекурсивной. Одним из популярных примеров является функция Аккермана. Другой пример общерекурсивной функции, не являющейся примитивно рекурсивной, строится диагональным методом Кантора из универсальной функции для множества одноместных примитивно рекурсивных функций.

Как было показано Гёделем, частично рекурсивные функции совпадают с множеством вычислимых функций.[источник не указан 4711 дней]

История возникновения названий

Термины «частично рекурсивная функция» и «общерекурсивная функция» прижились в силу исторических причин и по сути являются результатом неточного перевода английских терминов partial recursive function и total recursive function, которые по смыслу более правильно переводить как «рекурсивные функции, определенные на части множества возможных аргументов» и «рекурсивные функции, определенные на всём множестве возможных аргументов». Наречие «частично» относится не к прилагательному «рекурсивные», а к области определения функции. Возможно, более правильным названием было бы «частично определённые рекурсивные функции» и просто «везде определённые рекурсивные функции». Но длинные названия не прижились.

См. также

Литература

  • Гильберт Д, Бернайс П. Основания математики. Т. 1. — М.: Наука, 1979.
  • Клини С. К. Введение в метаматематику. — М., 1957.
  • Мальцев А. И. Алгоритмы и рекурсивные функции. М.: Наука, 1986.
  • Петер Р. Рекурсивные функции — ИЛ, 1954.
  • Н. К. Верещагин, А. Шень Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции, 2-е изд., исправленное. — М.: МЦНМО, 2002.

Read other articles:

  هذه المقالة عن مدينة الخمس. لمعانٍ أخرى، طالع الخمس (توضيح). الخمس لبدة الكبرى شرق الخمس الاسم الرسمي الخمس الإحداثيات 32°38′59″N 14°15′52″E / 32.64972°N 14.26444°E / 32.64972; 14.26444 تقسيم إداري  البلد  ليبيا  شعبية المرقب عاصمة لـ شعبية المرقب  خصائص جغرافية ارتف...

 

Keluaran 10Tulah belalang, lukisan James Tissot (dilukis antara tahun 1896-1902).KitabKitab KeluaranKategoriTauratBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen2← pasal 9 pasal 11 → Keluaran 10 (disingkat Kel 10) adalah bagian dari Kitab Keluaran dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Termasuk dalam kumpulan kitab Taurat yang disusun oleh Musa.[1][2] Teks Naskah sumber utama: Masoretik, Taurat Samaria, Septuaginta dan Naskah La...

 

American writer and activist Hallie Quinn BrownBornHallie Quinn Brown(1850-03-10)March 10, 1850Pittsburgh, Pennsylvania, U.S.DiedSeptember 16, 1950(1950-09-16) (aged 100)Wilberforce, Ohio, U.S.Resting placeMassies Creek Cemetery, Cedarville, OhioOccupationeducator, writer, activistLanguageEnglishAlma materWilberforce University Hallie Quinn Brown (March 10, 1850 – September 16, 1950)[A] was an American educator, writer and activist.[1] Originally of Pittsburgh, Pennsy...

Марґо Гемінґвей Народилася 16 лютого 1954(1954-02-16)ПортлендПомерла 1 липня 1996(1996-07-01)[1] (42 роки)Санта-Моніка, окр. Л.-Анджелес, Каліфорнія, США·передозування барбітуратуКраїна  СШАДіяльність акторка, модель, кіноакторка, телеакторкаAlma mater Catlin Gabel SchooldЗнання мов англій

 

Тишаангл. Hush Офіційний постер фільму.Жанр фільм-трилер і горорРежисер Майк ФленаґанПродюсер Trevor Macy Джейсон Блум Сценарист Майк Фленаґан Кейт Сігел У головних ролях Джон Галлахер молодший Майкл Трукко Кейт Сігел Оператор Джеймс КністКомпозитор The Newton BrothersМонтаж Май...

 

Das Stefan-Boltzmann-Gesetz gibt die thermisch abgestrahlte Leistung eines idealen Schwarzen Körpers in Abhängigkeit von seiner Temperatur an. Es ist benannt nach den Physikern Josef Stefan und Ludwig Boltzmann. Inhaltsverzeichnis 1 Überblick 2 Herleitung aus der Thermodynamik 3 Zwei- und eindimensionale Körper 4 Herleitung aus der Quantenmechanik 5 Nicht-Schwarze Strahler 6 Beispiel 7 Siehe auch 8 Weblinks 9 Einzelnachweise Überblick Anstieg der emittierten Strahlungsleistung über die ...

Suburb of Sydney, New South Wales, AustraliaPalm BeachSydney, New South WalesA view of Palm Beach from Barrenjoey LighthousePalm BeachPalm BeachCoordinates33°36′00″S 151°19′22″E / 33.60000°S 151.32278°E / -33.60000; 151.32278Population1,652 (SAL 2021)[1]Established1911Postcode(s)2108[2]Elevation9 m (30 ft)Area2.6 km2 (1.0 sq mi)Location41 km (25 mi) north of Sydney CBDLGA(s)Northern Beaches CouncilStat...

 

Volcán Irazú Cráter principal del Volcán IrazúLocalización geográficaContinente América CentralCordillera Cordillera Volcánica CentralCoordenadas 9°58′45″N 83°51′09″O / 9.9791666666667, -83.8525Localización administrativaPaís Costa Rica Costa RicaDivisión Costa RicaCaracterísticas generalesTipo Volcán en escudoAltitud 3.432 m s. n. m.Prominencia 1872 metrosGeologíaObservatorio Observatorio Vulcanológico y Sismológico de Costa RicaÚltima erupci...

 

Красильщик Ісаак Матвійович Народився 14 квітня 1857(1857-04-14)Кишинів, Бесарабська губерніяПомер 16 листопада 1920(1920-11-16) (63 роки)Кишинів, Королівство РумуніяКраїна Російська імперія→  РумуніяДіяльність ентомологAlma mater Імператорський Новоросійський УніверситетГалузь енто...

Skała gmina miejsko-wiejska Herb Flaga Państwo  Polska Województwo  małopolskie Powiat krakowski TERC 1206103 Siedziba Skała Burmistrz Krzysztof Wójtowicz(od 2018) Powierzchnia 74,3 km² Populacja (30.06.2016)• liczba ludności 10 498[1] • gęstość 140,3 os./km² Nr kierunkowy 12 Tablice rejestracyjne KRA Adres urzędu:Rynek 2932-043 Skała Szczegółowy podział administracyjny Liczba sołectw 17 Położenie na mapie województwa małopolskiegoS...

 

伊東甲子太郎 日語寫法日語原文伊東甲子太郎假名いとう かしたろう平文式罗马字Itou Kashitarou 伊東甲子太郎(いとう かしたろう、天保6年(1835年) - 慶應3年11月18日(1867年12月13日)),新選组参謀兼文學師父。後來的御陵衛士(高台寺黨)盟主。諱武明。最初名字為大藏。號誠齋。假名為宇田兵衛。 出身 幼名祐之。原名為鈴木大藏。生於常陸志筑藩。是東大橋現(石...

 

Sixth month of the Hindu lunar calendar This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bhadra Hindu calendar – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this template message) BhadraImmersion of Ganesha murtis in MumbaiNative nameभाद्रपद...

Angkatan Darat ke-18 JepangKapitulasi Jenderal AdachiAktif9 November 1942 – 15 Agustus 1945Negara Kekaisaran JepangCabang Angkatan Darat Kekaisaran JepangTipe unitInfanteriPeranKorporasiMarkasNuginiJulukanMō (猛code: ja is deprecated , Fierce)PertempuranKampanye Nugini Angkatan Darat ke-18 Jepang (1945)Kesatuan indukAngkatan Darat Wilayah Ke-8 JepangKomponen Divisi Infanteri ke-20 Divisi Infanteri ke-41 Divisi Infanteri ke-51[1] Angkatan Darat ke-18 Jepang (第18軍code:...

 

Ragnar Lodbrok during his presentation of KrákumálKrákumál or the Lay of Kraka is a skaldic poem, consisting of a monologue in which Ragnar Lodbrok is dying in Ælla's snake pit and looks back at a life full of heroic deeds. It was composed in the 12th century, almost certainly in the Scottish islands.[1] It is composed in a kind of háttlausa in 29 stanzas, most of them with ten lines. Thomas Percy was the first to translate the poem into English. In moving and forceful language,...

 

Cet article est une ébauche concernant le Qatar. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Principales routes du Qatar Cet article décrit les différents moyens de transport au Qatar. Transports publics En 2002, le gouvernement a lancé Mowasalat (marque « Karwa »), une compagnie 100% publique dont l'objet est de s'assurer de la fourniture de moyens de transports terrestres. Auparavant, 3 ...

Эту статью предлагается удалить.Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/13 июня 2022.Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует воздерживаться от переименований или немотив...

 

Personal digital assistant released in 2018 Gemini PDAManufacturerPlanet ComputersCompatible networks GSM/GPRS/EDGE 850/900/1800/1900 CDMA 850/1900 MHz BC0 BC1+ EVDO WCDMA 900/2100MHz LTE 1/2/3/4/5/7/12/17/20/41 First released2018; 5 years ago (2018)PredecessorPsion Series 5, Psion Series 7SuccessorCosmo Communicator, Astro Slide 5G TransformerTypeSubnotebook personal digital assistant smartphoneForm factorWide clamshell design, with physical keyboardDimensions15.1 mm (...

 

Community college in Raymond, Mississippi, U.S. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hinds Community College – news · newspapers · books · scholar...

Theatre in London Finborough TheatreLocationWest BromptonLondon, SW10 9EDUnited KingdomCoordinates51°29′12″N 0°11′24″W / 51.486599°N 0.190107°W / 51.486599; -0.190107Public transit Earl's Court West BromptonTypeOff West End theatreCapacity50 seatsCurrent useTheatreProductionShort seasonsConstructionOpened24 June 1980RebuiltInternal reconstruction, 1983Years active1980–presentArchitectGeorge Godwin and Henry GodwinWebsitewww.finboroughtheatre.co.uk The Fin...

 

Office building, Restaurant in New Taipei, TaiwanFar Eastern Mega Tower遠東板橋百揚大樓General informationStatusCompletedTypeOffice building, RestaurantLocationBanqiao, New Taipei, TaiwanCoordinates25°0′46.7″N 121°28′1.3″E / 25.012972°N 121.467028°E / 25.012972; 121.467028Construction started13 May 2010[1]Completed1 May 2013[1]HeightRoof220.6 m (724 ft)Technical detailsFloor count50Floor area122,929.02 m2 (1,323,197.0&...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!