Критерий Дарбина—Уотсона (или DW-критерий) — статистический критерий, используемый для тестирования автокорреляции первого порядка элементов исследуемой последовательности. Наиболее часто применяется при анализе временных рядов и остатков регрессионных моделей.
Статистика Дарбина—Уотсона
Критерий назван в честь Джеймса Дарбина[англ.] и Джеффри Уотсона[англ.]. Критерий Дарбина—Уотсона рассчитывается по следующей формуле[1][2]:
где — коэффициент автокорреляции первого порядка.
Подразумевается, что в модели регрессии ошибки специфицированы как , где распределено, как белый шум. , , а , где .
В случае отсутствия автокорреляции ; при положительной автокорреляции стремится к нулю а при отрицательной — к 4:
На практике применение критерия Дарбина—Уотсона основано на сравнении величины с теоретическими значениями и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости .
- Если , то гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция);
- Если , то гипотеза не отвергается;
- Если , то нет достаточных оснований для принятия решений.
Когда расчётное значение превышает 2, то с и сравнивается не сам коэффициент , а выражение [2].
Также с помощью данного критерия выявляют наличие коинтеграции между двумя временными рядами. В этом случае проверяют гипотезу о том, что фактическое значение критерия равно нулю. С помощью метода Монте-Карло были получены критические значения для заданных уровней значимости. В случае, если фактическое значение критерия Дарбина—Уотсона превышает критическое, то нулевую гипотезу об отсутствии коинтеграции отвергают[2].
Недостатки
- Неприменим к моделям авторегрессии, а также к моделям с гетероскедастичностью условной дисперсии и GARCH-моделям.
- Не способен выявлять автокорреляцию второго и более высоких порядков.
- Даёт достоверные результаты только для больших выборок[2].
- Не подходит для моделей без свободного члена (для них статистика, аналогичная , была рассчитана Farebrother).
- Дисперсия коэффициентов будет расти, если имеет распределение, отличающееся от нормального.
h-критерий Дарбина
Критерий Дарбина—Уотсона неприменим для моделей авторегрессии, так как он для подобного рода моделей может принимать значение, близкое к двум, даже при наличии автокорелляции в остатках. Для этих целей используется -критерий Дарбина.
-статистика Дарбина применима тогда, когда среди объясняющих регрессоров есть . На первом шаге методом МНК строится регрессия. Затем критерий Дарбина применяется для выявления автокорреляции остатков в модели с распределёнными лагами[2]:
где
- — число наблюдений в модели;
- — оценка дисперсии коэффициента при лаговой результативной переменной .
При увеличении объёма выборки распределение -статистики стремится к нормальному с нулевым математическим ожиданием и дисперсией, равной 1. Поэтому гипотеза об отсутствии автокорреляции остатков отвергается, если фактическое значение -статистики оказывается больше, чем критическое значение нормального распределения[3].
Ограничение данной статистики следует из её формулировки: в формуле присутствует квадратный корень, следовательно, если дисперсия коэффициента при велика, то процедура невыполнима.
Критерий Дарбина — Уотсона для панельных данных
Для панельных данных используется немного видоизменённый критерий Дарбина—Уотсона:
В отличие от критерия Дарбина—Уотсона для временных рядов, в этом случае область неопределенности является очень узкой, в особенности для панелей с большим количеством индивидуумов[4].
См. также
Примечания
Литература
Ссылки
Значения критерия Дарбина — Уотсона