Инвариант Концевича, (или интеграл Концевича[1]) — инвариант ориентированного оснащённого зацепления определённого типа.
Является универсальным инвариантом Васильева[2] в том смысле, что каждый коэффициент инварианта Концевича является инвариантом конечного типа, и наоборот, любой инвариант конечного типа может быть представлен в виде линейной комбинации таких коэффициентов.
Является далеко идущим обобщением простой интегральной формулы для числа зацепления[3].
Представим трехмерное пространство как прямое произведение комплексной прямой с координатой z и вещественной прямой с координатой t. Вложим зацепление в пространство так, чтобы координата t была функцией Морса на L. Это значит, что во всех точках, где t как функция параметра на кривой имеет нулевую производную, ее вторая производная не должна обращаться в нуль, а значения t во всех таких точках (критические значения) должны быть различны между собой[5].
Оказывается, число зацепления можно тогда сосчитать по такой формуле:
Формула Концевича
(Исходный) интеграл Концевича узла K — это следующий элемент пополнения алгебры хордовых диаграмм[5]:
Объяснение этой формулы см. в статье С. В. Дужина.
Если обозначить через H тривиальный узел, вложение которого в пространство даёт два максимума и два минимума, получим[6]:
,
где c — число критических точек функции t на K.
Можно показать, что интеграл , во-первых, сходится для любого узла, расположенного в пространстве указанным выше способом, а во-вторых, не меняется при гладких изотопиях узла, при которых сохраняется число критических точек функции t. Ввиду того, что узел — замкнутая кривая, появляться и исчезать критические точки могут только парами.
называется окончательным интегралом Концевича
Интеграл Концевича — довольно сложный объект, и в течение нескольких лет никто не умел вычислять окончательный интеграл Концевича даже для тривиального узла. Известны были лишь коэффициенты при некоторых хордовых диаграммах в бесконечной сумме.
В 1997 году появилась гипотеза Д. Бар-Натана с соавторами[7] (доказана в 1998[8]), что[9]
,
здесь O — неузел (окружность), эквивалентный H, — модифицированные числа Бернулли, а — колёса, т.е. диаграммы в виде окружности с радиальными отрезками. Произведения колёс понимаются как несвязное объединение диаграмм, а сами колёса интерпретируются как линейные комбинации диаграмм Фейнмана (см. ниже).
Диаграмма Якоби
Диаграмма Фейнмана и хордовая диаграмма
Диаграмма Фейнмана степени n — это связный трёхвалентный граф с 2n вершинами, в котором выделен ориентированный цикл, называемый петлёй Уилсона[10].
Хордовая диаграмма является частным случаем диаграмм Фейнмана (у них все трёхвалентные вершины лежат на петле Уилсона).
Степень диаграммы Фейнмана — это половина общего числа вершин графа.
Диаграмма Фейнмана называется связной, если соответствующий граф остаётся связным после отбрасывания петли Уилсона[3].
Определение
Пусть X — окружность (которая является 1-мерным многообразием и будет служить петлёй Уилсона).
Как показано на рисунке справа, диаграмма Якоби порядка n является графом с 2n вершинами, в котором внешняя окружность (петля Уилсона) отражена сплошной линией, а пунктирные линии называются внутренним графом, который удовлетворяет следующим условиям:
Направление указывается только на внешнем цикле.
Вершины имеют значения 1 или 3. Вершины со значением 3 связаны с одним из других (полу)рёбер по часовой или против часовой стрелки, что отражено в маленькой ориентированной окружности.
Вершины со значением 1 часто называют одновалентными, а со значением 3 — трёхвалентными[11].
Одновалентные вершины связаны с внешней окружностью без кратности и упорядочены ориентацией окружности. Диаграмма Якоби может быть несвязной, при этом требуется, чтобы в каждой компоненте связности была хотя бы одна одновалентная вершина[11].
Рёбра на G называются хордами. Мы обозначаем как A(X) факторпространство коммутативной группы, образованной всеми диаграммами Якоби на X по следующим соотношениям:
(Соотношение AS) + = 0
( Соотношение IHX) = −
( Соотношение STU) = −
(Соотношение FI) = 0.
Если любая связная компонента графа G имеет вершину со значением 3, то мы можем превратить диаграмму Якоби в хордовую диаграмму с помощью рекурсивного применения соотношения STU. Если ограничиться только хордовыми диаграммами, то четыре соотношения выше сводятся к следующим двум соотношениям:
(Четырёхчленное соотношение) − + − = 0.
(Соотношение FI) = 0.
Замечание: В диаграммах Якоби разрешены кратные рёбра и висячие петли[12].
Свойства
Взяв среднее арифметическое по всем способам приклеивания петли Уилсона к одновалентным вершинам, любую диаграмму Якоби можно превратить в линейную комбинацию диаграмм Фейнмана[11].
Работать с диаграммами Якоби удобнее, чем с диаграммами Фейнмана, поскольку, помимо общей градуировки половиной числа вершин, есть ещё две дополнительные градуировки: по числу компонент связности и по числу одновалентных вершин[13].
Степень или порядком диаграммы Якоби определяется как половина суммы чисел её вершин. Это число всегда является целым и равно числу хорд в хордовой диаграмме, полученной из диаграммы Якоби[12].
Подобно плетениям[англ.], диаграммы Якоби образуют моноидальную категорию. Композиция и тензорное произведение морфизмов определяются методом «укладки коробок»:
Иначе говоря, тензорное произведение морфизмов — это несвязное объединение,
а композиция — склейка соответствующих частей границы[14].
В специальном случае, когда X является интервалом I, A(X) будет коммутативной алгеброй. Если рассматривать A(S1) как алгебру с умножением, определённым как связная сумма, A(S1) изоморфна A(I).
Диаграмму Якоби можно рассматривать как абстракцию представления тензорной алгебры, порождённой алгебрами Ли, что позволяет нам определить некоторые операции, аналогичные to копроизведениям, коединицам и антиподам алгебр Хопфа.
Поскольку Инварианты Васильева (инварианты конечного типа) тесно связаны с хордовыми диаграммами, можно построить сингулярный узел из хордовой диаграммы G на S1. Kn обозначает пространство, образованное всеми сингулярными узлами степени n, каждый такой G определяет единственный элемент в Km / Km+1.
Весовая система
Отображение из диаграмм Якоби в положительные числа называется весовой системой. Отображение, расширенное на A(X), также называется весовой системой. Системы имеют следующие свойства:
Пусть g — полупростая алгебра Ли, а ρ — её представление. Мы получаем весовую систему путём «подстановки» инвариантного тензора g в хорду диаграммы Якоби и ρ в базисном многообразии X диаграммы Якоби.
Мы можем рассматривать трёхвалентные вершины диаграмм Якоби как скобочное произведение алгебры Ли, стрелки сплошной линии как представление пространства ρ, а одновалентные вершины как действия алгебры Ли.
Соотношение IHX и соотношение STU соответствуют соответственно тождеству Якоби и определению представления
Диаграммы Якоби были введены по аналогии с диаграммами Фейнмана, когда Концевич определил инварианты узла через кратные интегралы в первой половине 1990-х годов[16]. Он представлял сингулярные точки хордами, таким образом, он работал только с хордовыми диаграммами. Д. Бар-Натан позднее сформулировал их как одно- и трёхвалентные графы, изучал их алгебраические свойства и назвал их в своей статье "диаграммами китайских иероглифов" (Chinese character diagrams)[17]. Для обозначения этих диаграмм использовались разные термины, включая «хордовые диаграммы» и «диаграммы Феймана», но примерно с 2000 года они получили название диаграмм Якоби, поскольку соотношение IHX соответствует тождеству Якоби для алгебр Ли.
D. Bar-Natan, S. Garoufalidis. On the Melvin-Morton-Rozansky Conjecture // Inventiones Mathematicae. — 1996. — Вып. 125.
D.Bar-Natan, S. Garoufalidis, L. Rozansky, D. Thurston. Wheels, wheeling, and the Kontsevich integral of the unknot // Israel Journal of Mathematics.. — 2000. — Т. 119. — arXiv:q-alg/9703025.
D. Bar-Natan, T. Q. T. Le,D. P Thurston. Two applications of elementary knot theory to Lie algebras and Vassiliev invariants // Geometry and Topology.. — 2003. — Т. 7(1).