нуль-индикатор — прибор, отклонение стрелки которого показывает наличие тока в цепи и его направление, но не величину. На шкале такого прибора отмечено только одно число — ноль;
Обычно в качестве индикатора используется гальванометр.
Сопротивление второй ветви изменяют до тех пор, пока показания гальванометра не станут равны нулю, то есть потенциалы точек узлов D и B не станут равны. По отклонению стрелки гальванометра в ту или иную сторону можно судить о направлении протекания тока на диагонали моста BD (см. рисунок) и указывают в какую сторону изменять регулируемое сопротивление для достижения «баланса моста».
Когда гальванометр показывает ноль, говорят, что наступило «равновесие моста» или «мост сбалансирован». При этом:
отношение равно отношению :
откуда
разность потенциалов между точками B и D (см. рисунок) равна нулю;
ток по участку BD (через гальванометр) (см. рисунок) не протекает (равен нулю).
Сопротивления , должны быть известны заранее.
Изменяют сопротивление до баланса моста.
Вычисляют искомое сопротивление :
Вывод формулы см. ниже.
Точность
При плавном изменении сопротивления гальванометр способен зафиксировать момент наступления равновесия с большой точностью. Если величины , и были измерены с малой погрешностью, величина будет вычислена с большой точностью.
В процессе измерения сопротивление не должно изменяться, так как даже небольшие его изменения приведут к нарушению баланса моста.
Недостатки
К недостаткам предложенного способа можно отнести:
необходимость регулирования сопротивления . На поиски «равновесия» тратится время. Гораздо быстрее измерить несколько параметров цепи и вычислить по другой формуле.
Условие баланса моста
Выведем формулу для расчёта сопротивления .
Первый способ
Считается, что сопротивление гальванометра мало настолько, что им можно пренебречь (). То есть, можно вообразить, что точки B и D соединены (см. рисунок).
Учитывая, что для «сбалансированного моста» , получим:
Поместив слагаемые по разные стороны от знака равенства, получим:
Сократив , получим:
Умножив на произведение знаменателей, получим:
Раскрыв скобки, получим:
После вычитания получим:
Выразив , получим:
В данном случае мостовая схема рассматривалась, как комбинация двух делителей, а влияние гальванометра считалось пренебрежимо малым.
Общее сопротивление без выполнения условия баланса
В случае, если условие баланса не выполнено, расчёт общего сопротивления довольно громоздкий.
Пользуясь правилами Кирхгофа, получаем систему уравнений:
Тогда после исключения из системы всех токов получим окончательный результат, представленный в наиболее кратком виде:
где в суммах в числителе и в знаменателе суммируются все возможные комбинации из произведений сопротивлений без повторений сомножителей (всего таких комбинаций по десять).
Схемы подключения
На практике для измерения сопротивления с помощью мостовых схем применяют двухпроводное и четырёхпроводное подключение.
Двухпроводная схема подключения применяется при измерениях сопротивлений величиной выше 10 Ом. К точкам B и C (см. рисунок) подключаются по одному проводу.
Четырёхпроводная схема подключения применяется при измерении сопротивления величиной до 10 Ом. К точкам B и C (см. рисунок) подключаются по два провода. Это позволяет исключить влияние сопротивления проводов на величину измеренного сопротивления .
Принцип действия всех этих приборов основан на измерении сопротивления чувствительного резистивного элемента-датчика, сопротивление которого изменяется при изменении воздействующей на него неэлектрической величины. Резистивный датчик (датчики) включается электрически в одно или несколько плеч моста Уитстона и измерение неэлектрической величины сводится к измерению изменения сопротивления датчиков.
Применение моста Уитстона в этих приложениях обусловлено тем, что позволяет измерять относительно малое изменение сопротивления, то есть в случаях когда
Обычно в современных измерительных приборах мост Уитстона подключается через аналого-цифровой преобразователь к цифровому вычислительному устройству, например, к микроконтроллеру, обрабатывающему сигнал моста. При обработке, как правило, производится линеаризация, масштабирование с преобразованием в численное значение неэлектрической величины в единицы её измерения, коррекция систематических погрешностей датчиков и измерительной схемы, индикация в удобном и наглядном для пользователя цифровом и/или машинно-графическом виде. Также может производиться статистическая обработка измерений, гармонический анализ и другие виды обработки.
измерителях деформации деталей под воздействием механической нагрузки и др.
При этом тензорезисторы, наклеенные на упругие деформируемые детали включаются в плечи моста, а полезным сигналом является напряжение диагонали моста между точками D и B (см. рисунок).
Если выполняется соотношение:
то независимо от напряжения на диагонали моста между точками A и C (напряжения) между точками D и B ()) будет равно нулю:
Но если то на диагонали появится ненулевое напряжение («разбаланс» моста), однозначно связанное с изменением сопротивления тензорезистора, и, соответственно, с величиной деформации упругого элемента, при измерении разбаланса моста измеряют деформацию, а так как деформация связана, например, в случае весов, с весом взвешиваемого тела, то и в результате измеряют его вес.
Для измерения знакопеременных деформаций помимо тензодатчиков часто используют пьезоэлектрические датчики. Последние в этих приложениях вытеснили тензодатчики благодаря лучшим техническим и эксплуатационным характеристикам. Недостатком пьезодатчиков является непригодность их для измерения медленных или статических деформаций.
Измерения других неэлектрических величин
Описанный принцип измерения деформации с помощью тензорезисторов в тензометрии сохраняется для измерения иных неэлектрических величин с применением других резистивных датчиков, сопротивление которых изменяется под воздействием неэлектрической величины.
Измерение температуры
В этих приложениях применяются резистивные датчики, находящиеся в тепловом равновесии с изучаемым телом, сопротивление датчиков изменяется при изменении их температуры. Также применяются датчики не контактирующие непосредственно с изучаемым телом, а измеряющие интенсивность теплового излучения от объекта, например, болометрическиепирометры.
Косвенно через измерение температуры также производится измерение теплопроводности, теплоёмкости, скорости потоков газов и жидкостей в термоанемометрах и измерение иных неэлектрических величин, связанных с температурой, например, концентрации компонента в газовой смеси с помощью термокаталитических датчиков и датчиков теплопроводности в газовой хроматографии.
Измерение потоков излучения
В фотометрах применяются датчики, изменяющие своё сопротивление в зависимости от освещённости — фоторезисторы. Также существуют резистивные датчики для измерения потоков ионизирующих излучений.
Модификации
Используя мост Уитстона, можно с большой точностью измерять сопротивление.
Различные модификации моста Уитстона позволяют измерять другие физические величины: