У этого термина существуют и другие значения, см. Бент.
Бент-функция (от англ.bent — «изогнутый, наклонённый»[1], [2]) — булева функция с чётным числом переменных, для которой расстояние Хэмминга от множества аффинных булевых функций с тем же числом переменных максимально. Бент-функции в этом смысле обладают максимальной степенью нелинейности среди всех функций с данным числом переменных и благодаря этому широко применяются в криптографии для создания шифров, максимально устойчивых к методам линейного и дифференциального криптоанализа[1].
В русскоязычной литературе используется близкий по смыслу термин «максимально нелинейная функция», число переменных таких функций не ограничивается чётными числами. Максимально нелинейная функция с чётным числом переменных является бент-функцией [1].
Расстояние Хэмминга для двух булевых функций n переменных — количество различий в значениях этих функций на полном множестве из 2n наборов переменных.
Аффинная (линейная) булева функция — булева функция, полином Жегалкина которой не имеет нелинейных членов, то есть членов, представляющих собой конъюнкцию нескольких переменных.
Степень нелинейности булевой функции deg(f) — число переменных в самом длинном слагаемом её полинома Жегалкина.
Нелинейность булевой функцииN(f) — расстояние Хэмминга от данной функции до множества всех аффинных функций.
История
Бент-функции были введены в 1960-х годах Оскаром Ротхаузом (1927—2003), который в это время (с 1960 по 1966 годы) работал Институте оборонного анализа (IDA), где занимался криптографическими исследованиями. Его первая работа по бент-функциям относится к 1966 году[3], однако она была засекречена и в открытой печати появилась только в 1976 году[4].
В 1960-х годах В.А.Елисеев и О.П.Степченков занимались исследованием бент-функций в СССР, однако их работы до сих пор засекречены[1]. Известно, что они называли бент-функции "минимальными функциями" и предложили конструкцию МакФарланда еще в 1962 году.
Свойства
Нелинейность бент-функций с числом переменных n (n — чётное) определяется соотношением [1], [2]:
.
Для максимально нелинейных функций с нечётным числом переменных точное выражение для нелинейности неизвестно[1].
Примеры бент-функций
Ниже приведены примеры бент-функций четырёх, шести и восьми переменных[5].
Монография
В книге [1] приведен детальный обзор результатов в области бент-функций. Рассматривается история открытия бент-функций, описываются их приложения в криптографии и дискретной математике. Исследуются основные свойства и эквивалентные представления бент-функций, классификации бент-функций от малого числа переменных, комбинаторные и алгебраические конструкции бент-функций, связь бент-функций с другими криптографическими свойствами. Изучаются расстояния между бент-функциями и группа автоморфизмов бент-функций. Рассматриваются верхние и нижние оценки числа бент-функций и гипотезы о его асимптотическом значении. Приводится детальный систематический обзор 25 различных обобщений бент-функций, рассматриваются открытые вопросы в данной области. Книга [1] 2015 года содержит более 125 теорем о бент-функциях и существенно расширяет книгу [2] , опубликованную в 2011 году.