В 1900 году американский инженер Реджинальд Фессенден приступил к экспериментам по передаче звуковых сигналов посредством радиоволн. Он впервые включил угольный микрофон в цепь, соединяющую искровой генератор электромагнитных колебаний с антенной. Метод получил название «амплитудная модуляция» (АМ). Качество принятого звукового сигнала было плохим, поэтому дальнейшие работы Фессендена были направлены на усовершенствование и генератора, и приёмника[1][2]. В 1906 году он уже использовал несущий сигнал (переменный ток с частотой 50 кГц[2]), вырабатываемый электромашинным генератором[3]. Также был усовершенствован угольный микрофон для пропускания тока до нескольких ампер[2]. Проводимые в начале XX века первые опыты по передаче звуковых сигналов для широкой аудитории связаны с именами как Фессендена, так и Ли де Фореста[4].
Этот вид модуляции с 1920 года (сначала в США, с 1922—1923 годов в Великобритании, Франции и Германии, с 1924 года в СССР[4]) стал основным в звуковом радиовещании в диапазонах длинных, средних и коротких волн и до 1940-х годов применялся также и во всех других видах радиосвязи[3]. С 1920 года электромашинные генераторы заменялись генераторами на электронных лампах. К середине 1930-х годов значительное увеличение числа станций АМ-вещания привело к росту взаимных помех[4], кроме того, приём часто сопровождался треском при разрядах молний, а с развитием электротехники появились и другие помехи, как промышленные, так и бытовые. Исследования занимавшегося этой проблемой американского инженера Эдвина Армстронга привели к созданию системы радиовещания с частотной модуляцией (ЧМ), для которой в США поначалу была выделена полоса частот 42—50 МГц[5].
С середины XX века в служебной и любительской радиосвязи из-за «тесноты в эфире» на всех частотах начали применять разновидность амплитудной модуляции — модуляцию с одной боковой полосой (ОБП), одно из преимуществ которой — сужение в 2 раза занимаемой сигналом полосы частот. Однако модернизация сетей АМ-вещания путём их перевода на ОБП была практически невозможна — это требовало замены огромного парка вещательных приёмников. Для преодоления препятствия проводились исследования и эксперименты по созданию «совместимой ОБП». Такой вид модуляции (с дополнительной фазовой модуляцией АМ-сигнала) был предложен 1950-х годах учёными СССР и США, однако практического применения он не нашёл. В 1980-х годах Международный союз электросвязи предложил поэтапное, до 2015 года, внедрение ОБП, но к концу XX века появилась перспектива замены аналоговых систем передачи в радиовещании на цифровые[3].
В начале 2000-х годов был разработан комплект цифровых технологий Digital Radio Mondiale (DRM) на основе модуляции OFDM (в диапазонах длинных, средних и коротких волн). DRM позволяет прослушивать радиопередачи без шумов и помех, характерных для АМ, с близким к ЧМ-вещанию качеством, однако массового перехода на цифровые технологии не произошло. Это связано с большими расходами на замену огромного парка радиоприёмного и радиопередающего оборудования, а также с некоторыми недостатками DRM, например с неприятными для радиослушателя резкими обрывами радиоприёма при характерных для коротких волн глубоких замираниях радиосигнала.
Здесь — некоторая неотрицательная константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал , модулированный по амплитуде сигналом с коэффициентом модуляции .
Для неискаженной модуляции необходимо выполнение условия . Выполнение этого условия необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция).
Спектральное представление
Допустим, что мы хотим модулировать несущее колебание синусоидальным сигналом. Выражение для несущего колебания с частотой имеет вид (начальную фазу положим равной нулю):
где — амплитуда несущего колебания.
Выражение для синусоидального модулирующего сигнала с частотой имеет вид:
где — начальная фаза, . Тогда, в соответствии с (1):
Приведённая выше формула для может быть записана в следующем виде:
Спектр АМ-колебания в случае широкополосного модулирующего сигнала состоит из несущего колебания и двух так называемых боковых полос, имеющих частоту, отличную от . Для рассмотренного выше синусоидального модулирующего сигнала боковые полосы представляют собой синусоидальные сигналы и их частоты равны и .
Соседние по частоте радиостанции не будут создавать взаимных помех, если их несущие сигналы разнесены по частотному спектру так, что боковые полосы разных АМ-сигналов не перекрываются между собой.
Векторное представление
В векторном представлении спектральные составляющие модулированного сигнала представляются в виде комплексных амплитуд. При таком представлении синусоидальный несущий сигнал интерпретируется как вектор с длиной, равной его амплитуде, вращающийся против часовой стрелки с частотой несущего сигнала При амплитудной модуляции синусоидальным сигналом вектор результирующего модулированного сигнала представляется как векторная сумма вектора несущего сигнала и векторов комплексных амплитуд двух боковых спектральных составляющих и
В системе координат, связанной с вектором несущего сигнала векторы комплексных амплитуд боковых спектральных составляющих (векторы боковых полос) вращаются относительно неподвижного вектора несущего сигнала с частотой так как частоты этих составляющих отличаются от несущей частоты на — модулирующую частоту, причём вектор нижней боковой полосы вращается по часовой стрелке, а вектор верхней — против часовой стрелки. При этом компоненты векторов боковых полос, перпендикулярные вектору несущего сигнала, всегда равны по модулю и направлены в противоположные стороны (компоненты, направленные по оси х на рисунке), поэтому фаза модулированного сигнала всегда совпадает с фазой несущей, как показано на рисунке справа. При модуляции с подавленной несущей в спектре модулированного сигнала отсутствует вектор при однополосной модуляции отсутствует один из векторов боковых полос.
Разновидности
Разновидности амплитудной модуляции и сокращённые названия по некоторым классификациям:
однополосная с частично подавленной боковой полосой[7];
балансная модуляция[7] (БМ), или двухполосная модуляция с подавленным несущим сигналом (ДМ[8]).
Применение
В 1939 году в СССР был изобретён метод, названный полярной модуляцией, — его суть состояла в том, что положительная полуволна так называемого поднесущего сигнала модулировалась по амплитуде одним сообщением, а отрицательная — другим. В СССР этот метод (с частично подавленным поднесущим сигналом частотой 31,25 кГц) был принят для системы стереофонического ЧМ-вещания[3]. Подобный метод, но с подавленным поднесущим сигналом частотой 38 кГц, применён в широко распространённой системе с пилот-тоном[4].
Широкое применение АМ-радиосвязи в авиации объясняется сравнительной простотой построения передатчиков и приёмников АМ-сигнала и относительно невысокими требованиями к стабильности частоты радиоканалов[10]. Например, для однополосной модуляции при приёме речевых сообщений с хорошим качеством требования к точности восстановления частоты несущего сигнала достаточно высокие — наибольшая неточность при приёме на фоне шума составляет порядка 100 Гц. Однако при радиосвязи с быстро перемещающимися объектами требования к стабильности частоты передатчика и приёмника повышаются, так как на допустимую суммарную нестабильность частоты заметное влияние оказывает эффект Доплера[11], причём чем выше частота несущего сигнала, тем больше влияние. Поэтому из-за значительной нестабильности частоты радиоканалов применение однополосной модуляции в диапазоне метровых и дециметровых волн нецелесообразно — наиболее полно её преимущества реализованы в диапазоне коротких волн[12].
При двухполосной модуляции с подавленным несущим сигналом вся мощность передатчика расходуется на излучение боковых полос (в АМ-сигнале около двух третей мощности содержится в несущем сигнале[7]), что обеспечивает её высокую помехоустойчивость, но требования к стабильности частоты радиоканала остаются намного выше, чем, например, для амплитудной модуляции при несинхронном приёме[13].
В большинстве существующих радиоприёмных устройств для детектирования АМ-сигнала используется детектор огибающей, что приводит к двукратному проигрышу в помехоустойчивости по сравнению с приёмником с синхронным детектором, но упрощает схему приёмника[14].
Амплитудная модуляция (с её разновидностями) используется в измерительной технике, в биомедицинской аппаратуре (в том числе для физиотерапии[15]), в системах передачи телеметрической информации и в других областях техники[16]. Например, при измерении медленно меняющегося сигнала с малым уровнем проблема дрейфа требуемого усилителя постоянного тока решается преобразованием исходного сигнала в сигнал на частоте вспомогательных колебаний с амплитудой, пропорциональной амплитуде исходного сигнала. Затем преобразованный сигнал поступает через не пропускающий постоянный ток элемент (конденсатор, трансформатор) на вход усилителя переменного тока. После усиления и последующего преобразования каким-либо амплитудным детектором (часто применяется синхронный детектор) получается усиленный сигнал, повторяющий форму исходного сигнала[17].
Быховский М. А. Круги памяти (Очерки истории развития радиосвязи и вещания в XX столетии). — М.: МЦНТИ – Международный центр научной и технической информации, 2001. — 223 с. — (История электросвязи и радиотехники). — ISBN 5-93533-011-3.
Кулешов В. Н., Удалов Н. Н., Богачёв В. М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.