CKM-ма́трица, ма́трица Каби́ббо — Кобая́си — Маска́вы (ККМ-матрица, матрица смешивания кварков, иногда раньше называлась KM-матрица) в Стандартной моделифизики элементарных частиц — унитарная матрица, которая содержит информацию о силе слабых взаимодействий, изменяющих аромат. Технически, она определяет преобразование между двумя базисами квантовых состояний: состояниями свободно движущихся кварков (то есть их массовыми состояниями) и состояниями кварков, участвующих в слабых взаимодействиях. Она важна также для понимания нарушения CP-симметрии. Точное математическое определение этой матрицы дано в статье по основам Стандартной модели. Эта матрица была предложена для трёх поколений кварков японскими физиками Макото Кобаяси и Тосихидэ Маскава, которые добавили одно поколение к матрице, ранее предложенной Николой Кабиббо.
Слева мы видим CKM-матрицу вместе с вектором сильных собственных состояний кварков, а справа имеем слабые собственные состояния кварков. ККМ-матрица описывает вероятность перехода от одного кварка q к другому кварку q' . Эта вероятность пропорциональна
Величины значений в матрице были установлены экспериментально и равны приблизительно[1]:
Чтобы идти дальше, необходимо подсчитать количество параметров в этой матрице V, которые проявляются в экспериментах и, следовательно, физически важны. Если есть N поколений кварков (2Nароматов), то
комплексная матрица N×N содержит 2N² действительных чисел.
Ограничивающее условие унитарности ∑kVikV*jk = δij. Следовательно, для диагональных компонент (i = j) существует N ограничений, а для остающихся компонент — N(N − 1). Количество независимых действительных чисел в унитарной матрице равно N².
Одна фаза может быть поглощена каждым кварковым полем. Общая фаза ненаблюдаема. Следовательно, количество независимых чисел уменьшается на 2N − 1, то есть общее количество свободных переменных равно (N² − 2N + 1) = (N − 1)².
Из них N(N − 1)/2 — углы вращения, называемые кварковыми углами смешивания.
Если число поколений кварков N = 2 (исторически такой была первая версия CKM-матрицы, когда были известны только два поколения), есть только один параметр — угол смешивания между двумя поколениями кварков. Он называется угол Кабиббо в честь Николы Кабиббо.
В Стандартной моделиN = 3, следовательно, есть три угла смешивания и одна комплексная фаза, нарушающая CP-симметрию.
Наблюдения и предсказания
Идея Кабиббо появилась из-за необходимости объяснения двух наблюдаемых явлений:
переходы u ↔ d и e ↔ νe, μ ↔ νμ имели похожие амплитуды.
переходы с изменением странности ΔS = 1 имели амплитуды, равные 1/4 от амплитуд переходов без изменения странности (ΔS = 0).
Решение Кабиббо состояло в постулировании универсальности слабых переходов, чтобы решить проблему 1, и угла смешивания θc (теперь называемого углом Кабиббо) между d- и s-кварками, чтобы решить проблему 2.
Для двух поколений кварков нет нарушающей CP-симметрию фазы, как было показано выше. Поскольку нарушение CP-симметрии наблюдалось в распадах нейтральных каонов уже в 1964 году, появление немногим позже Стандартной модели было ясным сигналом о третьем поколении кварков, как было указано в 1973 году Кобаяси и Маскавой. Открытие b-кварка в Фермилабе (группой Леона Ледермана) в 1977 году немедленно привело к началу поисков ещё одного кварка третьего поколения — t-кварка.
Универсальность слабых переходов
Ограничение по унитарности CKM-матрицы для диагональных компонент может быть записано как
для всех поколений i. Это предполагает, что сумма всех связей кварка u-типа со всеми кварками d-типа одинакова для всех поколений. Никола Кабиббо в 1967 году назвал это соотношение слабой универсальностью. Теоретически, это следствие того факта, что все дублеты SU(2) взаимодействуют с векторными бозонами слабых взаимодействий с одинаковой константой связи. Это подтверждено во многих экспериментах.
Треугольники унитарности
Оставшиеся ограничения по унитарности ККМ-матрицы могут быть записаны в форме
Для любых фиксированных и различных i и j это ограничение накладывается на три комплексных числа, одно для каждого k, что означает, что эти числа являются вершинами треугольника на комплексной плоскости. Существует шесть вариантов i и j, поэтому и шесть таких треугольников, каждый из которых называется треугольником унитарности. Их формы могут быть очень разными, но они все имеют одинаковую площадь, которую можно отнести к нарушающей CP-симметрию фазе. Площадь исчезает для специфических параметров в Стандартной модели, для которых нет нарушения CP-симметрии. Ориентация треугольников зависит от фаз кварковых полей.
Поскольку как три стороны, как и три угла каждого треугольника могут быть измерены в прямых экспериментах, проводится серия тестов для проверки замкнутости треугольников. Это задача для таких экспериментов, как японский BELLE, калифорнийский BaBar и эксперимент LHCb проекта LHC.
Параметризации
Для полного задания CKM-матрицы требуется четыре независимых параметра.
Было предложено множество параметризаций, но наиболее популярны три.
KM-параметры
Изначально параметризация Кобаяси и Маскавы использовала три угла (θ1, θ2, θ3) и фазу CP-нарушения (δ).
где θ1 — угол Кабиббо, ci и si — соответственно косинус и синус угла θi.
«Стандартные» параметры
«Стандартная» параметризация CKM-матрицы использует три угла Эйлера (θ12, θ23, θ13) и фазу CP-нарушения (δ)[2]. Смешивание между поколениями кварков i и j исчезает, если угол смешивания θij стремится к нулю.
Здесь θ12 — угол Кабиббо, cij и sij — соответственно косинус и синус угла θij.
На текущий момент наиболее точные значения стандартных параметров[3][4]:
θ12 = 13,04 ± 0,05°,
θ13 = 0,201 ± 0,011°,
θ23 = 2,38 ± 0,06°,
δ13 = 1,20 ± 0,08 радиана.
Параметры Вольфенштейна
Третья параметризация CKM-матрицы, введёна Линкольном Вольфенштейном, использует параметры λ, A, ρ и η[5]. Параметры Вольфенштейна являются числами порядка единицы и связаны со «стандартной» параметризацией следующими соотношениями:
λ = s12,
Aλ2 = s23,
Aλ3(ρ − iη) = s13e−iδ.
Параметризация Вольфенштейна CKM-матрицы является аппроксимацией «стандартной» параметризации. Если ограничиться членами разложения до порядка λ3, она может быть представлена следующим образом:
CP-нарушение может быть определено измерением ρ − iη.
Используя значения из предыдущего подраздела, можно получить следующие значения параметров Вольфенштейна[4]: