Эффект Нернста — Эттингсгаузена

Термоэлектрические явления
Принципы
Применения

Эффект Нернста — Эттингсгаузена, или поперечный эффект Нернста — Эттингсгаузена, — термомагнитный эффект, наблюдаемый при помещении полупроводника, в котором имеется градиент температуры, в магнитное поле. Данный эффект был открыт в 1886 году В. Нернстом и А. Эттингсгаузеном. В 1948 году эффект в металлах получил своё теоретическое обоснование в работе Зондхаймера[1]

Суть эффекта состоит в том, что в полупроводнике появляется электрическое поле , перпендикулярное к вектору градиента температур и вектору магнитной индукции , то есть в направлении вектора . Если градиент температуры направлен вдоль оси , а магнитная индукция — вдоль , то электрическое поле параллельно вдоль оси . Поэтому между точками и (см. рис.) возникает разность электрических потенциалов . Величину напряжённости электрического поля можно выразить формулой:

где  — так называемая постоянная Нернста — Эттингсгаузена, которая зависит от свойств полупроводника и может принимать как положительные, так и отрицательные значения. Например, в германии с удельным сопротивлением ~ 1 Ом/см при комнатной температуре, при  Гс и  К/см наблюдается электрическое поле  В/см. Значение постоянной , а следовательно и , сильно зависят от температуры образца и от магнитного поля и при изменении этих величин могут даже изменять знак.

Поперечный эффект Нернста — Эттингсгаузена возникает по той же причине, что и эффект Холла, то есть в результате отклонения потока заряженных частиц силой Лоренца. Различие, однако, заключается в том, что при эффекте Холла направленный поток частиц возникает в результате их дрейфа в электрическом поле, а в данном случае — в результате диффузии.

Существенным отличием является также тот факт, что, в отличие от постоянной Холла, знак не зависит от знака носителей заряда. Действительно, при дрейфе в электрическом поле изменение знака заряда приводит к изменению направления дрейфа, что и даёт изменение знака поля Холла. В данном же случае поток диффузии всегда направлен от нагретого конца образца к холодному, независимо от знака заряда частиц. Поэтому направления силы Лоренца для положительных и отрицательных частиц взаимно противоположны, однако направление потоков электрического заряда в обоих случаях одно и то же.

Продольный эффект Нернста — Эттингсгаузена

Продольный эффект Нернста — Эттингсгаузена заключается в изменении термоэдс металлов и полупроводников под влиянием магнитного поля.

В отсутствие магнитного поля термоэдс в электронном полупроводнике определяется разностью компонент скоростей быстрых электронов (движущихся с горячей стороны) и медленных электронов (движущихся с холодной стороны) вдоль градиента температуры.

При наличии магнитного поля продольные (вдоль градиента температуры) и поперечные (поперек градиента температуры) компоненты скоростей электронов изменяются в зависимости от угла поворота скорости электронов в магнитном поле, определяемого временем свободного пробега электронов в металле или полупроводнике.

Если время свободного пробега для медленных электронов или дырок (в полупроводниках) больше, чем для быстрых, то , где  — продольные компоненты скоростей медленных и быстрых электронов при наличии магнитного поля,  — продольные компоненты скоростей медленных и быстрых электронов при отсутствии магнитного поля. Величина термоэдс в магнитном поле, пропорциональная разности будет больше, чем в отсутствие магнитного поля при разности . И, наоборот, если время свободного пробега для медленных электронов меньше, чем для быстрых, наличие магнитного поля уменьшает термоэдс.

В электронных полупроводниках термоэдс в магнитном поле увеличивается, если время свободного пробега уменьшается с увеличением энергии электрона (при рассеянии на акустических фононах).

В электронных полупроводниках термоэдс в магнитном поле уменьшается, если время свободного пробега увеличивается с увеличением энергии электрона (при рассеянии на ионизированных атомах примеси).[2]

Литература

Примечания

  1. Sondheimer E. H. The Theory of the Galvanomagnetic and Thermomagnetic Effects in Metals Архивная копия от 4 марта 2016 на Wayback Machine // Proceedings of the Royal Society A. — July 21, 1948. — №193. — pp. 484-512; doi:10.1098/rspa.1948.0058.
  2. Аскеров Б. М. Кинетические эффекты в полупроводниках. — Л.: Наука, 1970.

См. также

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!