Эллиптический фильтр (фильтр Кауэра, или фильтр Золотарёва) — электронный фильтр, характерной особенностью которого являются пульсации амплитудно-частотной характеристики как в полосе пропускания, так и полосе подавления. Величина пульсаций в каждой из полос независима друг от друга. Другой отличительной особенностью такого фильтра является очень крутой спад амплитудной характеристики, поэтому с помощью этого фильтра можно достигать более эффективного разделения частот, чем с помощью других линейных фильтров. При цитировании важно помнить что в западной литературе называется исключительно фильтром Кауэра, в соответствии с первенством описания в работах по теории цепей и телефонии. Золотарев, ученик Чебышева, лишь развивал его теорию и не остался в истории связи за пределами России; телефония появился лишь незадолго до его смерти. Поэтому часто применяют компромиссный термин "эллиптический" фильтр.
Если пульсации в полосе подавления равны нулю, то эллиптический фильтр становится фильтром Чебышёва I рода. Если пульсации равны нулю в полосе пропускания, то фильтр становится фильтром Чебышёва II рода. Если же пульсации отсутствуют на всей амплитудной характеристике, то фильтр становится фильтром Баттерворта.
Значение показателя пульсаций определяет пульсации в полосе пропускания, пульсации же в полосе подавления зависят как от показателя пульсаций, так и от показателя селективности.
В полосе пропускания эллиптическая функция меняет значения от нуля до единицы. АЧХ в полосе пропускания, таким образом, варьирует от единицы до .
В полосе подавления эллиптическая функция меняет значения от бесконечности до значения , которое определяется как:
АЧХ в полосе подавления, таким образом, меняет значения от нуля до
Предельный случай превращает эллиптическую функцию в многочлен Чебышёва, и, таким образом, эллиптический фильтр становится фильтром Чебышёва I рода с показателем пульсаций
Так как фильтр Баттерворта является предельным случаем фильтра Чебышёва, то при выполнении условий и так что эллиптический фильтр становится фильтром Баттерворта.
Нули модуля АЧХ совпадают с полюсами дробно-рациональной эллиптической функции.
Полюса эллиптического фильтра могут быть определены так же, как и полюса фильтра Чебышёва I рода. Для простоты примем частоту среза равной единице. Полюса эллиптического фильтра будут нулями знаменателя амплитудной характеристики. Используя комплексную частоту получим:
где значения обратной cd-функции сделаны явными при помощи целого индекса m.
Полюса эллиптической функции в таком случае:
Как и в случае многочленов Чебышёва, это можно выразить в явной комплексной форме
[1]
где — функция от , а и — нули эллиптической функции. Функция определена для всех n в смысле эллиптической функции Якоби. Для порядков 1 и 2 имеем
где
Рекурсивные свойства эллиптических функций можно использовать для построения выражений более высокого порядка для :
где
Эллиптические фильтры с минимальной добротностью
См.[2]
Эллиптические фильтры обычно определяются путём задания определённой величины пульсаций в полосе пропускания, полосе подавления и крутизной амплитудной характеристики. Эти характеристики являются определяющими для задания минимального порядка фильтра. Другой подход к проектирования эллиптического фильтра заключается в определении чувствительности амплитудной характеристики аналогового фильтра к значениям его электронных компонент. Эта чувствительность обратно пропорциональна специальному показателю (добротности) полюсов передаточной функции фильтра. Добротностью полюса определяется как:
и является мерой влияния данного полюса на общую амплитудную характеристику. Для эллиптического фильтра заданного порядка существует связь между показателем пульсаций и фактором селективности, который минимизирует добротность всех полюсов передаточной функции:
Это приводит к существованию фильтра, наименее чувствительного к изменению параметров компонент фильтра, однако при таком способе проектирования теряется возможность независимо назначать величину пульсаций в полосе пропускания и полосе подавления. Для таких фильтров при увеличении порядка пульсации как в полосе подавления, так и в полосе пропускания уменьшаются, а крутизна характеристики вокруг частоты среза увеличивается. При расчёте фильтра с минимальной добротностью необходимо учитывать, что порядок такого фильтра будет больше, чем при обычном методе расчёта. График модуля амплитудной характеристики будет выглядеть практически так же, как и раньше, однако полюса будут располагаться не по эллипсу, а по кругу, причём в отличие от фильтра Баттерворта, полюса которого также располагаются по кругу, расстояние между ними будет неодинаковым, а на мнимой оси будут располагаться нули.
Сравнение с другими линейными фильтрами
На рисунке представлены графики амплитудно-частотных характеристик некоторых наиболее распространённых линейных электронных фильтров 5-го порядка.
Как следует из графиков, эллиптический фильтр имеет наибольшую крутизну характеристики, однако он также обладает самыми большими пульсациями как в полосе пропускания, так и в полосе подавления.