Скорость звука — скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах).
Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях — меньше, чем в твёрдых телах. Также в газах скорость звука зависит от температуры данного вещества, в монокристаллах — от направления распространения волны.
Обычно не зависит от частотыволны и её амплитуды; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.
Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука[2]. Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф. Бэкон в «Новом органоне» указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела.
Применив этот метод, различные исследователи (М. Мерсенн, П. Гассенди, У. Дерхам, группа учёных Парижской академии наук — Д. Кассини, Ж. Пикар, Гюйгенс, Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350—390 м/с).
Теоретически вопрос о скорости звука впервые рассмотрел И. Ньютон в своих «Началах»; он фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку.
Правильное теоретическое значение скорости звука было получено Лапласом[3][4][5][6].
В 2020 году физики рассчитали максимально возможную скорость звука, которая составляет 36 км/с (этот показатель приблизительно втрое превышает скорость звука в алмазе (12 км/с), самом твёрдом известном материале в мире). Теория предсказывает наибольшую скорость звука в среде твёрдого атомарного металлического водорода, при давлении выше 1 млн атмосфер[7][8].
Расчёт скорости звука в жидкости и газе
Проверить информацию.
Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения идёт дискуссия на тему: Сомнения в единицах измерения.
Скорость звука в однородной жидкости (или газе) вычисляется по формуле:
Данные выражения являются приближёнными, поскольку основываются на уравнениях, описывающих поведение идеального газа. При больших давлениях и температурах необходимо вносить соответствующие поправки.
Для расчёта сжимаемости многокомпонентной смеси, состоящей из невзаимодействующих друг с другом жидкостей и/или газов, применяется уравнение Вуда. Это же уравнение применимо и для оценки скорости звука в нейтральных взвесях.
Для растворов и других сложных физико-химических систем (например, природный газ, нефть) эти упрощённые выражения могут давать очень большую погрешность.
Влияние высоты на атмосферную акустику
В атмосфере Земли температура является главным фактором, влияющим на скорость звука. Для данного идеального газа с постоянной теплоемкостью и составом скорость звука зависит исключительно от температуры. В таком идеальном случае эффекты понижения плотности и понижения давления на высоте компенсируют друг друга, и на скорость звука влияет только температура.
Поскольку температура (и, следовательно, скорость звука) уменьшается с увеличением высоты до 11 км, звук преломляется вверх, удаляясь от слушателей на земле, создавая акустическую тень на некотором расстоянии от источника[9]. Уменьшение скорости звука с высотой называется отрицательным градиентом скорости звука.
Однако выше 11 км в этой тенденции происходят изменения. В частности, в стратосфере на высоте более 20 км скорость звука увеличивается с высотой из-за повышения температуры в результате нагрева озонового слоя. Это дает положительный знак градиента скорости звука в этой области. Ещё одна область положительного градиента наблюдается на очень больших высотах, в слое называемом термосферой (лежащем выше 90 км).
В однородных твёрдых телах могут существовать два типа объёмных волн, отличающихся друг от друга поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой всегда выше, чем скорость второй :
В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода. При частоте колебаний ниже частоты Био, скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана.
При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объёмных волн.
Скорость звука в воде
В чистой воде скорость звука составляет около 1500 м/с (см. опыт Колладона — Штурма) и увеличивается с ростом температуры.
Важное прикладное значение имеет также скорость звука в солёной воде океанов. Скорость звука увеличивается с увеличением солёности и температуры. При увеличении давления скорость также возрастает, то есть, увеличивается с глубиной. Предложено несколько различных эмпирических формул для вычисления скорости распространения звука в воде в зависимости от температуры, солёности и давления (глубины).
Например, формула Вильсона 1960 года для нулевой глубины даёт следующее значение скорости звука:
Иногда также пользуются упрощённой формулой Лероя:
где — глубина в метрах.
Эта формула обеспечивает точность около 0,1 м/с для °C и при м.
При температуре +24 °C, солёности 35 промилле и нулевой глубине скорость звука равна около 1532,3 м/c. При °C, глубине 100 м и той же солёности скорость звука равна 1468,5 м/с[10].
Коэффициенты формулы ЮНЕСКО
Коэффициент
Значение
Коэффициент
Значение
1402,388
7,166·10−5
5,03830
2,008·10−6
-5,81090·10−2
-3,21·10−8
3,3432·10−4
9,4742·10−5
-1,47797·10−6
-1,2583·10−5
3,1419·10−9
-6,4928·10−8
0,153563
1,0515·10−8
6,8999·10−4
-2,0142·10−10
-8,1829·10−6
-3,9064·10−7
1,3632·10−7
9,1061·10−9
-6,1260·10−10
-1,6009·10−10
3,1260·10−5
7,994·10−12
-1,7111·10−6
1,100·10−10
2,5986·10−8
6,651·10−12
-2,5353·10−10
-3,391·10−13
1,0415·10−12
-1,922·10−2
-9,7729·10−9
-4,42·10−5
3,8513·10−10
7,3637·10−5
-2,3654·10−12
1,7950·10−7
1,389
1,727·10−3
-1,262·10−2
-7,9836·10−6
Международная стандартная формула, применяемая для определения скорости звука в морской воде известна как формула ЮНЕСКО и описана в работе[11]. Она более сложная, чем простые формулы, приведённые выше, и вместо глубины в неё входит давление как параметр. Оригинальный алгоритм ЮНЕСКО для расчётов по формуле описан в работе N. P. Fofonoff и R. C. Millard[12].
В 1995 году коэффициенты, применяемые в данной формуле были уточнены[13] после принятия международной температурной шкалы 1990 года. Конечная форма формулы ЮНЕСКО имеет следующий вид, входящие в формулу постоянные коэффициенты согласно[13] приведены в таблице:
где
Здесь — температура в градусах Цельсия (в диапазоне от 0 °С до 40 °С),
— солёность в промилле (в диапазоне от 0 до 40 промилле),
— давление в барах (в диапазоне от 0 до 1000 бар).
В библиотеке приводится исходный код алгоритма ЮНЕСКО на языке C#.