Случайный вектор имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:
Произвольная линейная комбинация компонентов вектора имеет нормальное распределение или является константой (это утверждение работает только если математическое ожидание равно 0).
В случае , многомерное нормальное распределение сводится к обычному нормальному распределению.
Если случайный вектор имеет многомерное нормальное распределение, то пишут .
Двумерное нормальное распределение
Частным случаем многомерного нормального распределения является двумерное нормальное распределение. В этом случае имеем две случайные величины с математическими ожиданиями , дисперсиями и ковариацией . В этом случае ковариационная матрица имеет размер 2, её определитель равен
Тогда плотность двумерного невырожденного (коэффициент корреляции по модулю не равен единице) нормального распределения можно записать в виде:
.
В том случае, если (то есть являются зависимыми), их сумма все еще распределена нормально, но в дисперсии появляется дополнительное слагаемое : .
Свойства многомерного нормального распределения
Если вектор имеет многомерное нормальное распределение, то его компоненты имеют одномерное нормальное распределение. Обратное верно при независимости компонент[3].
Если случайные величины имеют одномерное нормальное распределение и совместно независимы, то случайный вектор имеет многомерное нормальное распределение. Матрица ковариаций такого вектора диагональна.
Если имеет многомерное нормальное распределение, и его компоненты попарно некоррелированы, то они независимы. Однако, если некоторые случайные величины имеют одномерные нормальные распределения и попарно не коррелируют, то отсюда не следует, что они независимы и имеют многомерное нормальное распределение.
Пример. Пусть , а с равными вероятностями и независима от указанной нормальной величины. Тогда если , то корреляция и равна нулю. Однако, эти случайные величины зависимы и в силу первого утверждения абзаца не имеют многомерного нормального распредедения.
Многомерное нормальное распределение устойчиво относительно линейных преобразований. Если , а — произвольная матрица размерности , то
Таким преобразованием и сдвигом любое невырожденное нормальное распределение можно привести к вектору независимых стандартных нормальных величин.
Моменты многомерного нормального распределения
Пусть — центрированные (с нулевым математическим ожиданием) случайные величины имеющие многомерное нормальное распределение, тогда моменты для нечетных равно нулю, а для четных вычисляется по формуле
где суммирование осуществляется по всевозможным разбиениям индексов на пары. Количество множителей в каждом слагаемом равно , количество слагаемых равно
Например, для моментов четвертого порядка в каждом слагаемом по два множителя и общее количество слагаемых будет равно . Соответствующая общая формула для моментов четвертого порядка имеет вид:
В частности если
При
При
Условное распределение
Пусть случайные векторы и имеют совместное нормальное распределение с математическими ожиданиями , ковариационными матрицами и матрицей ковариаций . Это означает, что объединенный случайный вектор
подчиняется многомерному нормальному распределению с вектором математического ожидания
и ковариационной матрицей, которую можно представить в виде следующей блочной матрицы
Первое равенство определяет функцию линейной регрессии (зависимости условного математического ожидания вектора от заданного значения x случайного вектора ), причем матрица — матрица коэффициентов регрессии.
Условная ковариационная матрица представляет собой матрицу ковариаций случайных ошибок линейных регрессий компонентов вектора на вектор . В случае если — обычная случайная величина (однокомпонентный вектор), условная ковариационная матрица — это условная дисперсия (по существу дисперсия случайной ошибки регрессии на вектор )