Несмотря на то, что критерий Рауса исторически предложен ранее критерия Гурвица, его можно использовать как более удобную схему расчёта определителей Гурвица, особенно при больши́х степенях характеристического полинома[2].
К достоинствам метода относятся простая реализация на ЭВМ с помощью рекурсивного алгоритма, а также простота анализа для систем небольшого (до 3) порядка. К недостаткам можно отнести отсутствие наглядности метода: при его применении сложно получить информацию о степени устойчивости, о её запасах.
Метод работает с коэффициентами характеристического уравнения системы. Пусть — передаточная функция системы, а — характеристическое уравнение системы. Представим характеристический полином в виде
Критерий Рауса представляет собой алгоритм, по которому составляется специальная таблица, в которую коэффициенты характеристического полинома записывают таким образом, что:
в первой строке записываются коэффициенты уравнения с чётными индексами в порядке их возрастания;
во второй строке — с нечётными;
остальные элементы таблицы определяются по формуле: , где — номер строки, — номер столбца;
число строк таблицы Рауса на единицу больше порядка характеристического уравнения.
Таблица Рауса:
1
2
3
4
-
1
...
-
2
...
3
...
4
...
...
...
...
...
...
...
Формулировка критерия Рауса:
Для устойчивости линейной стационарной системы необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса были положительны. Если это не выполняется, то система неустойчива.