Машина Тьюринга с полиномиальным ограничением пространства
Если для данной машины Тьюринга верно, что существует полиномp(n), такой что на любом входе размера n она посетит не более p(n) клеток, то такая машина называется машиной Тьюринга с полиномиальным ограничением пространства.
Можно показать, что:
1. Если машина Тьюринга с пространством, полиномиально ограниченным p(n), то существует константа c, при которой эта машина допускает свой вход длины n не более, чем за шагов.
Отсюда следует, что все языки машин Тьюринга с полиномиальным ограничением пространства — рекурсивные.
5. Если язык принадлежит PSPACE, то существует машина Тьюринга с полиномиальным ограничением пространства, такая что она остановится за шагов для некоторого c и полинома p(n).
Известно, что хотя бы один из трёх символов включения в утверждении должен быть строгим (то есть исключать равенство множеств, отношение между которыми он описывает), но неизвестно, который из них. Также хотя бы одно подмножество в утверждении должно быть собственным (то есть хотя бы один символ включения должен быть строгим).
Есть предположение, что все эти включения строгие .
Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений = Introduction to Automata Theory, Languages, and Computation. — М.: «Вильямс», 2002. — 528 с. — ISBN 0-201-44124-1.
Hopcroft, Motwani, Ullman: «Introduction to Automata Theory, Languages, and Computation»