Зима искусственного интеллекта — период в истории исследований искусственного интеллекта, связанный с сокращением финансирования и общим снижением интереса к проблематике[1]. Термин был введён по аналогии с термином «ядерная зима»[2]. Направление искусственного интеллекта прошло несколько циклов, сопровождавшихся повышенным ажиотажем, сменяющихся «зимами» — разочарованием, критикой и последующим сокращением финансирования, а затем возобновлением интереса несколько лет или десятилетий спустя[3].
Термин впервые упомянут в 1984 году на ежегодной встрече AAAI (Американской ассоциации искусственного интеллекта): на одном из обсуждений Роджер Шэнк[англ.] и Марвин Мински — два ведущих исследователя в области искусственного интеллекта — предупредили бизнес-сообщество, что энтузиазм в отношении направления вышел из-под контроля, и что за ним последует разочарование, иллюстрацией послужила «первая зима» направления, пережитая в 1970-х годах. После этого обсуждения последовала цепная реакция, сопровождающаяся пессимизмом в среде исследователей, распространившаяся также в СМИ, и в конечном итоге приведшая к снижению финансирования и остановке крупных работ[2]; три года спустя миллиардная индустрия искусственного интеллекта была фактически обрушена[2].
Как для всякого ажиотажа, сопутствующего перспективным технологиям, и характеризующимся последующими спадами (железнодорожная мания, пузырь доткомов), «зи́мы искусственного интеллекта» в первую очередь означали крах в восприятии лиц, принимающих решения о финансировании — правительственных чиновников, инвесторов, венчурных капиталистов, руководителей организаций. При этом, несмотря на взлёт и падение репутации искусственного интеллекта, исследования в этой области велись непрерывно, и после спадов интерес инвесторов возобновлялся по мере очередных результатов. Так, в 2005 году Рэй Курцвейл отмечал, что «зима искусственного интеллекта» не прервала работ в этой области, и уже к середине 2000-х годов «многие тысячи приложений искусственного интеллекта глубоко встроены в инфраструктуру каждой отрасли»[4].
Две длительные «зимы» относят к периодам 1974—1980 годов и 1987—1993 годов[5][6]. Кроме того, было несколько менее значительных эпизодов, повлиявших на снижение интереса к направлению, среди таковых провал проектов по машинному переводу в 1966 году и неудача концепции коннекционизма в 1970 году.
Другие периоды спада интереса:
Во время холодной войны правительство США было особенно заинтересовано в автоматическом, мгновенном переводе русских документов и научных докладов. Начиная с 1954 года, правительство США приложило много усилий для разработки машинного перевода. Вначале исследователи были оптимистичны: новая работа Ноама Хомского по грамматике упрощала процесс перевода, и было «много предсказаний приближающегося прорыва»[7].
Однако исследователи недооценили сложность разрешения лексической многозначности. Для того чтобы перевести предложение без ошибок, машина должна была иметь представление, о чём идет речь в предложении. Согласно мифу[8], фраза «the spirit is willing but the flesh is weak» (крепок дух, но немощна плоть) при переводе на русский и потом обратно на английский превратилась в «the vodka is good but the meat is rotten» (водка хорошая, но мясо протухло)[9], а «out of sight, out of mind» (с глаз долой, из сердца вон) — в «blind idiot» (слепой идиот). Позже исследователи назовут это проблемой здравого смысла[англ.].
В 1964 году Национальный исследовательский совет (NRC) США забил тревогу из-за отсутствия прогресса и создал Консультативный комитет по автоматической обработке языков[англ.] (ALPAC) для изучения этой проблемы. В своем отчете 1966 года комитет пришел к выводу, что машинный перевод оказался более дорогим, менее точным и более медленным, чем человеческий перевод. Потратив около 20 миллионов долларов, NRC свернул все разработки. Карьеры были уничтожены, а исследования прекращены[10][7].
Однако работа в одном из направлений коннекционизма продолжалась — изучение перцептрона, предложенного Фрэнком Розенблаттом, которому удавалось поддерживать исследования в этой области благодаря своим способностям «продавца» и силы своей личности[12]. Он оптимистично прогнозировал, что перцептрон «со временем сможет учиться, принимать решения и переводить языки»[13]. Основные исследования перцептронов резко прекратились в 1969 году после публикации Марвином Минским и Сеймуром Пейпертом книги «Перцептроны», которая обозначила пределы возможностей перцептронов.
Коннективизм был забыт на несколько последующих десятилетий. Хотя важная работа в этом направлении частично продолжалась, например, был предложен метод обратного распространения ошибки, однако найти достаточное финансирование для проектов коннекционистов в 1970-х и начале 1980-х годов было трудно[14]. «Зима» исследований коннекционистов прекратилась в середине 1980-х годов, когда работы Джона Хопфилда, Дэвида Румельхарта и других возродили масштабный интерес к нейронным сетям[15]. Розенблатт не дождался этого, он погиб в результате несчастного случая вскоре после публикации книги «Перцептроны»[13].
Неудачи 1974 года
Отчет Лайтхилла
В 1973 году британский парламент поручил профессору сэру Джеймсу Лайтхиллу оценить состояние исследований искусственного интеллекта в Великобритании. Его отчет, известный как отчет Лайтхилла, раскритиковал полную неспособность ИИ достичь своих «грандиозных целей». Он пришел к выводу, что все то, что может делать ИИ, может быть сделано также другими науками. Он особенно выделил проблемы «комбинаторного взрыва» и «трудноразрешимости», которые показывали, что большинство самых успешных алгоритмов ИИ годятся лишь для решения «игрушечных» задач, а на реальных практических задачах они не работают[16].
Отчет был оспорен в дебатах, которые транслировались на канале BBC в программе «Controversy» в 1973 году. В дебатах «Универсальный робот — это мираж» Лайтхилл, представлявший Королевский Институт, дискутировал против команды из Дональда Мичи[англ.], Джона Маккарти и Ричарда Грегори[англ.][17]. Позже Маккарти писал, что «проблема комбинаторного взрыва была признана в ИИ с самого начала»[18].
Отчет Лайтхилла привел к прекращению большинства исследований в сфере ИИ в Великобритании[16]. Исследования продолжалось лишь в нескольких университетах второго эшелона (Эдинбург, Эссекс и Сассекс). Джеймс Хендлер[англ.] пишет: «Это создало эффект волны, который привел к сокращению финансирования разработок ИИ по всей Европе»[19]. Крупномасштабные исследования возобновились только в 1983 году, когда британский проект Элви[англ.], созданный в ответ на японский проект компьютеров пятого поколения, начал финансировать в ИИ из военного бюджета в размере 350 миллионов фунтов стерлингов. Элви имел ряд требований, которые касались только Великобритании, что не подходило международным партнерам, особенно американским, и стало причиной прекращения финансирования второго этапа.
Ситуация переменилась после принятия поправки Мэнсфилда в 1969 году, которая требовала от DARPA финансирования «целевых исследований, а не общих ненаправленных исследований»[20] Ненаправленные общие исследования характерные 1960-м перестали финансироваться DARPA, теперь исследователи должны были показать, что их работа вскоре принесет пользу в виде новых военных технологий. Отныне предложения исследователей искусственного интеллекта рассматривались по очень строгим стандартам. Ситуация ещё больше осложнилась после выхода отчета Лайтхилла и собственного исследования DARPA (American Study Group), которые показали, что большинство исследований искусственного интеллекта вряд ли принесут хоть какую-либо пользу в обозримом будущем. В итоге деньги DARPA были направлены на проекты с более четкими целями, такие как автономные танки и системы управления боем. К 1974 году было трудно найти финансирование для проектов искусственного интеллекта[20].
Исследователь ИИ Ханс Моравек обвинил в кризисе нереалистичные прогнозы своих коллег: «Многие исследователи оказались в паутине все большего преувеличения. Первые обещания, данные им DARPA, были слишком оптимистичными. Конечно, то, что они разрабатывали в результате, значительно отличалось от обещаний. Но они считали, что в следующий раз не могут пообещать меньше, чем в первый, поэтому обещали ещё больше»[13]. В результате сотрудники DARPA потеряли терпение к исследованиям ИИ, как утверждает Моравек. Моравек сообщил Дэниелу Кревьеру[англ.], что «в DARPA буквально сказали: некоторых из этих людей следует проучить, сократив их контракты на два миллиона долларов в год почти до нуля!»[13].
Хотя проект автономного танка провалился, система управления боем (Dynamic Analysis and Replanning Tool, DART) оказалась чрезвычайно успешной и сэкономила миллиарды долларов во время первой войны в Персидском заливе, таким образом компенсируя все инвестиции DARPA в ИИ[21] и тем самым оправдав прагматичную политику DARPA[22].
Провал SUR
DARPA оказалась глубоко разочарованной исследователями из университета Карнеги-Меллона, работавшими над программой распознавания речи. В DARPA рассчитывали получить, и считали, что им обещали предоставить, систему голосового управления для пилотов. Команда SUR разработала систему, которая могла распознать разговорный английский язык, но только если слова были произнесены в определённом порядке. В DARPA посчитали, что их обманули, и в 1974 году они отменили грант в размере 3 миллиона долларов в год[23].
Много лет спустя успешные коммерческие системы распознавания речи будут использовать технологии, разработанные командой Карнеги-Меллона (такие как скрытые марковские модели), и в 2001 году рынок систем распознавания речи достигнет 4 млрд долларов[24].
Неудачи конца 1980-х и начале 1990-х годов
Крах рынка лисп-машин в 1987 году
В 1980-х корпорации по всему миру взяли на вооружение экспертные системы (форма искусственного интеллекта). Первой коммерческой экспертной системой была XCON, разработанная в университете Карнеги-Меллона для корпорации Digital Equipment. Имевшая огромный успех, она помогла Digital Equipment сэкономить, по оценкам, 40 миллионов долларов за шесть лет работы. Корпорации по всему миру начали разрабатывать и внедрять экспертные системы, к 1985 году они тратили на ИИ свыше миллиарда долларов, большая часть которых направлялась на внутренние отделы искусственного интеллекта. Для того чтобы удовлетворить эти потребности выросла целая индустрия, в которую входили разработчики программ, такие как Teknowledge и Intellicorp (KEE)[англ.], и производители оборудования, такие как Symbolics[англ.] и Lisp Machines Inc[англ.]. Они создали специализированные компьютеры для ИИ, лисп-машины, оптимизированные для обработки языка программирования Lisp, в то время наиболее предпочтительного в области разработки ИИ[13].
В 1987 году, через три года после прогноза Минского и Шанка, рынок лисп-машин рухнул. Рабочие станции таких компаний, как Sun Microsystems, предлагали мощную альтернативу лисп-машинам, а такие компании, как Lucid Inc., предложили среду LISP для этого нового класса рабочих станций. Производительность рабочих станций общего назначения становилась всё более трудным вызовом для лисп-машин. Такие компании, как Lucid Inc. и Franz Inc, предлагали всё более мощные версии LISP. Результаты бенчмарков показали, что рабочие станции превосходят в производительности лисп-машины[25]. Позже настольные компьютеры Apple и IBM также предложат более простую и популярную архитектуру для запуска LISP-приложений. К 1987 году они стали мощнее, чем более дорогие лисп-машины. На настольных компьютерах были доступны движки на основе правил, такие как CLIPS[26]. Эти альтернативы не оставили потребителям причин покупать дорогие лисп-машины. Вся отрасль лисп-машин стоимостью полмиллиарда долларов исчезла за один год[13].
С коммерческой точки зрения многие Lisp-компании обанкротились, как например Symbolics, Lisp Machines Inc., Lucid Inc. и др. Другие компании, такие как Texas Instruments, и Xerox, ушли из отрасли. Ряд компаний-клиентов, тем не менее, продолжали использовать и поддерживать системы, написанные на Lisp и разработанные на лисп-машинах.
Падение популярности экспертных систем
В начале 1990-х годов первые успешные экспертные системы, такие как XCON, оказались слишком дорогими в обслуживании. Их было сложно обновлять, они не могли обучаться, они были «хрупкими» (делали нелепые ошибки при получении необычных входных данных). Также они стали жертвой проблем (таких как проблема квалификации[англ.]), обнаруженных при исследовании немонотонной логики. Экспертные системы доказали свою эффективность лишь в нескольких особых контекстах[1]. Другая проблема касалась вычислительной сложности задачи поддержки истинности[англ.] относительно общих знаний. KEE использовал подход на основе предположений (см. NASA, TEXSYS[27]), поддерживающий сценарии множественных миров[27], который был труден для понимания и применения.
Небольшое количество компаний, оставшихся в области экспертных систем, в конце концов были вынуждены сократить штаты и искать новые рынки и программные парадигмы, такие как рассуждения на основе прецедентов или универсальный доступ к базе данных. Развитие Common Lisp спасло много систем, таких как ICAD, которые нашли применение в инженерии на основе знаний. Другие системы, такие как KEE Intellicorp, перешли с Lisp на C++ на ПК и помогли в становлении объектно-ориентированных технологий (в том числе внесли большой вклад в разработку UML).
Фиаско компьютеров пятого поколения
В 1981 году японское министерство международной торговли и промышленности[англ.] выделило 850 миллионов долларов на проект компьютеров пятого поколения. Его задачей было создание программ и машин способных поддерживать разговор, переводить языки, понимать изображения и размышлять как люди. К 1991 году впечатляющий список целей, составленный в 1981 году, не был выполнен, а некоторые из них не были выполнены ни в 2001, ни в 2011 годах. Как и в других проектах ИИ, ожидания были гораздо больше, чем возможности их реализовать[13].
Сокращение Инициативы стратегических вычислений
В 1983 году DARPA в ответ на проект пятого поколения возобновили финансирование исследований искусственного интеллекта, запустив Инициативу стратегических вычислений (Strategic Computing Initiative). Проект предполагалось начать с практических, достижимых целей, одной из которых был искусственный интеллект в долгосрочной перспективе. Программа находилась под руководством Управления технологий обработки информации[англ.] (IPTO), а также была направлена на суперкомпьютеры и микроэлектронику. К 1985 году на программу было потрачено 100 миллионов долларов, в 60 учреждениях было запущено 92 проекта, из них половина в промышленности, другая половина в университетах и правительственных лабораториях. Исследования искусственного интеллекта щедро финансировались SCI[11].
В 1987 году руководителем IPTO стал Джек Шварц, который отверг экспертные системы как «умелое программирование» и «глубоко и жестко» сократил финансирование ИИ, «лишая содержания» SCI. Шварц не считал ИИ «новой волной» и хотел, сосредоточить финансирование DARPA только на самых перспективных технологиях, по его словам, DARPA должна «кататься на серфе», а не «плавать по-собачьи». Кроме того, сотрудники программы сообщали о проблемах в коммуникации, организации и интеграции. Только несколько проектов пережили сокращение финансирования: помощник пилота, беспилотное наземное транспортное средство (так и не было создано) и система управления боем DART (как отмечалось выше, стала успешной)[11].
События после зимы ИИ
Репутация
Обзор отчетов середины 2000-х годов свидетельствует о том, что репутация ИИ все ещё была небезупречной:
Алекс Кастро в The Economist, 2007: «Термин „распознавание голоса“ отталкивает инвесторов, подобно „искусственному интеллекту“ он ассоциируется с ложными обещаниями»[28]
Патти Таскарелла в Pittsburgh Business Times[англ.], 2006: «Некоторые считают, что слово „робототехника“ отмечено клеймом, снижающим шансы компании на финансирование»[29]
Джон Маркофф[англ.] в Нью-Йорк Таймс, 2005: «В худшие для ИИ времена, ряд компьютерных специалистов и программистов избегал термина „искусственный интеллект“ из страха прослыть безумцами»[30].
Рэй Курцвейл писал в 2005 году: «Многие эксперты все ещё считают, что зима ИИ стала концом отрасли и с тех пор ИИ не дал практических результатов, однако уже сегодня существуют тысячи приложений ИИ во всех отраслях и они глубоко вплетены в их инфраструктуру»[31]. В конце 1990-х и начале XXI века технологии ИИ широко использовались в составе различных систем[32][31], правда, их успех почти никогда не приписывался ИИ. В 2006 году Ник Бостром пояснил, что «в повсеместное употребление вошло много передовых технологий ИИ часто без какого-либо упоминания ИИ вообще, поскольку когда что-либо становится достаточно полезным или распространенным, оно перестает называться ИИ». Родни Брукс примерно в то же время сказал: «существует этот глупый миф, что ИИ не оправдал надежд, но ИИ каждую секунду повсюду вокруг вас»[33].
Технологии ИИ достигли коммерческого успеха в таких областях, как машинный перевод, добыча данных, промышленная робототехника, логистика[21], распознавание речи, банковское программное обеспечение, медицинская диагностика и поисковая система Google[34].
Были разработаны контроллеры нечеткой логики для автоматических коробок передач в автомобилях. В 2006 году Audi TT, VW Touareg и VW Caravell оснащены коробкой передач DSP, которая использует нечеткую логику. Ряд моделей Skoda (Skoda Fabia) используют контроллеры с нечеткой логикой. Нечеткая логика широко используется в датчиках камер для фокусировки.
Эвристический поиск и анализ данных развились из входящих в сферу искусственного интеллектаэволюционного моделирования и машинного обучения. И снова эти технологии достигли значительного коммерческого успеха на широком круге реальных задач. Например, эвристический поиск использовался для составления графика работы магазинов и планирования рабочего графика для 20 000 инженеров. Анализ данных вместе с алгоритмами автоматизированного формирования классификаторов, разработанных в 1990-х годах исследователями в области машинного обучения с учителем (например, TDIDT, Support Vector Machines, Neural Nets, IBL), сейчас широко применяется для таргетинга маркетинговых опросов, выявления трендов и признаков (фич) в наборах данных.
Финансирование
Исследователи и экономисты оценивают положение дел в ИИ, в основном, по тому, какие проекты ИИ финансируются, кем и в каких объёмах. Тренды в финансировании часто задают крупные финансовые учреждения в развитых странах мира. В настоящее время значительную часть финансирования для исследований ИИ в США и Европейском Союзе обеспечивают DARPA и гражданская программа финансирования EU-FP7.
На 2007 год DARPA рассматривала предложения исследователей ИИ в рамках ряда программ, в числе которых The Grand Challenge Program[англ.], Cognitive Technology Threat Warning System[англ.] (CT2WS), «Human Assisted Neural Devices (SN07-43)», «Autonomous Real-Time Ground Ubiquitous Surveillance-Imaging System (ARGUS-IS)» и «Urban Reasoning and Geospatial Technology Exploitation (URGENT)».
Вероятно, самой известной является программа DARPA «The Grand Challenge Program»[35], по которой были разработаны полностью автоматизированные дорожные транспортные средства способные в автономном режиме успешно перемещаться по реальной местности[36].
DARPA также поддерживает программы по семантической паутине, уделяя большое внимание интеллектуальному управлению контентом и автоматизированному пониманию. Однако Джеймс Хендлер[англ.], менеджер программы DARPA, выразил разочарование способностью правительства совершать быстрые изменения и перешел к сотрудничеству с консорциумом Всемирной паутины, чтобы передать технологии в частный сектор.
Программа финансирования ЕС-FP7 оказывает поддержку исследователям Европейского Союза. В 2007—2008 годах она финансировала исследования ИИ по программам: «Когнитивные системы: взаимодействие и робототехника» (193 млн евро), «Цифровые библиотеки и цифровой контент» (203 млн евро), FET (185 млн евро)[37].
Опасения новой зимы
Иногда высказывают опасения, что новую зиму ИИ могут вызвать чрезмерно амбициозные или нереалистичные обещания известных ученых в области ИИ или чрезмерными обещаниями коммерческих поставщиков. Например, в начале 1990 года исследователи опасались, что к зиме ИИ приведет широкая огласка планов Cog[англ.] создать интеллект уровня двухлетнего ребёнка.
Джеймс Хендлер в 2008 году отметил, что финансирование ИИ, как в ЕС, так и в США, перенаправлялось больше на прикладные области и кросс-научные исследования с традиционными науками, такими как биоинформатика[26]. Этот отход от фундаментальных исследований происходит, поскольку существует тенденция к переходу в практические приложения, например, такие как семантическая паутина. Ссылаясь аргумент конвейера (см. Причины), Хендлер увидел параллель с зимой 1980-х годов и предупредил о наступлении зимы ИИ в 2010-м.
Наступление весны
В прошлом появлялись постоянные сообщения о том, что ещё одна весна ИИ неизбежна или уже наступила:
Радж Редди в президентском обращении к AAAI, 1988: «Отрасль впечатляет как никогда. Наши последние достижения значительны и существенны. Мифическая зима ИИ, возможно, превратилась в весну ИИ. Я вижу, как расцветают цветы»[38]
Памела МакКордак в «Machines Who Think»: «В 1990-х годах зеленые ростки пробились через зимнюю почву»[11]
Джим Хендлер и Девика Субраманьян в «AAAI Newsletter», 1999: «Весна здесь! В отличие прошлого десятилетия с зимой ИИ, сейчас — лучшее время работать в сфере ИИ»
Рэй Курцвейл в своей книге «Сингулярность близко», 2005: «Зима ИИ уже давно закончилась»[33]
Хизер Хальвенштейн в «Computerworld», 2005: «Сейчас исследователи просыпаются из того, что называлось „зима ИИ“»
Джон Маркофф в «Нью-Йорк Таймс», 2005: «Сегодня исследователи говорят о весне ИИ»[30]
Джеймс Хендлер, в редакции выпуска «IEEE Intelligent Systems» за май-июнь ((Hendler 2007)): «Где все эти интеллектуальные агенты сейчас?»
В настоящее время заметное увеличение финансирования ИИ, его разработки, внедрения и коммерческого использования привело к тому, что зима ИИ давно закончилась[39].
Причина возникновения
Было предложено несколько объяснений зим ИИ. Чаще всего причиной зим называют ажиотаж, но также действовали и другие факторы, которые приведены ниже. Однако с переходом финансирования ИИ от правительств к коммерческим организациям в действие вступила новая динамика.
Ажиотаж
Зиму ИИ можно рассматривать как крах вследствие слишком раздутых ожиданий, сравнимый с экономическими пузырями на фондовом рынке, например железнодорожная мания или пузырь доткомов. В общей модели развития новых технологий (известной как цикл ажиотажа) любое событие, такое как технологический прорыв, на первых порах создает широкий общественный интерес, который подпитывает сам себя и создает «пик чрезмерных ожиданий». За ним идет «избавление от иллюзий», иными словами крах, поскольку усилия ученых и инженеров не поспевают за перегретыми ожиданиями инвесторов и других заинтересованных сторон. Технологии ИИ подтвердили эту модель развития.
Организационные причины
Ещё одним фактором послужило место ИИ в организации университетов. Исследования по ИИ часто принимают форму междисциплинарных исследований[англ.], в проектах могут быть задействованы специалисты из областей от философии и до машиностроения. Ввиду этого ИИ подвержен типичным болезням междисциплинарных исследований. Так, при сокращении финансирования факультеты будут урезать неосновные направления, к которым относятся междисциплинарные и необычные исследовательские проекты, то есть ИИ.
Экономические причины
Во время экономических спадов правительства сокращают университетские бюджеты, организационная причина усиливается ещё больше. Инвесторы в кризисное время выбирают для вложений менее рискованные проекты, чем ИИ. Все вместе это превращает экономический кризис в зиму ИИ. Доклад Лайтхилла вышел в период экономического кризиса в Великобритании[40], когда университетам приходилось выбирать, какие проекты пустить под нож.
Недостаток вычислительных мощностей
Потенциал нейронных сетей хорошо осознавался, но так и не был реализован из-за начального этапа развития вычислительной техники. Даже по современным стандартам достаточно простые сети требуют немалые вычислительные мощности.
Пустой конвейер
Связь между фундаментальными исследованиями и технологиями часто представляют как конвейер. Достижения в фундаментальных исследованиях порождают успехи в прикладных исследованиях, а они, в свою очередь, приводят к новым коммерческим применениям. Поэтому недостаток фундаментальных исследований приводит через несколько лет в будущем к сокращению рынка технологий. Такую точку зрения выдвинул Джеймс Хендлер в 2008 году[26], он высказал мнение, что провал экспертных систем в конце 1980-х был вызван не присущей им ненадежностью, а сокращением финансирования фундаментальных исследований в 1970-х. Экспертные системы появились в 1980-х годах благодаря прикладным исследованиям, но к концу десятилетия конвейер пустовал, поэтому недостатки экспертных систем не удалось устранить, тем самым оказалось невозможно обеспечить и дальнейшее финансирование.
Неспособность адаптироваться
Крах рынка LISP-машин и провал компьютеров пятого поколения — примеры, когда дорогие передовые продукты проиграли более простым и более дешёвым конкурентам. Эта ситуация попадает под определение дешевых подрывных инноваций, поскольку производители LISP-машин были отодвинуты на второй план. Экспертные системы пережили смену машин, их перенесли на новые настольные компьютеры, например, с помощью CLIPS, откуда становится ясно, что крах рынка LISP-машин и крах экспертных систем — это два разных события. Неспособность адаптироваться к такому изменению на рынке вычислительных машин считается одной из причин зимы 1980-х[26].
Дебаты о прошлом и будущем ИИ
Философы, когнитивисты, компьютерные специалисты размышляют о том, где ИИ потерпел неудачу и что с ним будет в будущем. Хьюберт Дрейфус подчеркивал ошибочность предположений об исследованиях в области ИИ[англ.] в прошлом и ещё в 1966 году правильно предсказал, что первая волна исследований ИИ не сможет выполнить те самые публичные обещания, которые она дает. Другие критики, такие как Ноам Хомский, утверждали, что ИИ двигается в неправильном направлении, в частности из-за сильной зависимости от статистических методов[41]. Замечания Хомского вписываются в большую дискуссию с Питером Норвигом о роли статистических методов в ИИ. Спор между учеными начался с комментариев Хомского на симпозиуме в Массачусетском технологическом институте[42], на которые Норвиг написал ответ[43].
↑J. Howe.Artificial Intelligence at Edinburgh University : a Perspective (неопр.) (ноябрь 1994). Архивировано 17 августа 2007 года.: «отчёт Лайтхилла [1973] вызвал массовую потерю доверия к ИИ со стороны академического истеблишмента в Великобритании (и в меньшей степени в США). Он сохранялся в течение десятилетия ― так называемая „зима AI“»
↑Stuart J. Russell, Peter Norvig (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, p. 24, ISBN0-13-790395-2, Архивировано28 февраля 2011, Дата обращения: 5 ноября 2018{{citation}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)Источник (неопр.). Дата обращения: 5 ноября 2018. Архивировано 28 февраля 2011 года.: «в целом, индустрия искусственного интеллекта выросла с нескольких миллионов долларов в 1980 году до миллиардов долларов в 1988 году. Вскоре после этого наступил период, названный „зимой ИИ“»
Russell, Stuart J.; Norvig, Peter. Artificial Intelligence: A Modern Approach (2nd ed.) (англ.). — Upper Saddle River, New Jersey: Prentice Hall, 2003. — ISBN 0-13-790395-2.