Ускорение свободного падения на поверхности Землиg (обычно произносится как «Же») варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах[2]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80665 м/с²[3][4]. Стандартное значение[англ.]g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81; 9,8 или 10 м/с².
В СМИ и научно-популярной литературе g нередко используется как внесистемная единица силы тяжести, применяемая, например, для оценки величины перегрузок при тренировках лётчиков и космонавтов, а также силы тяготения на других небесных телах (см. раздел Сравнение силы тяготения на Земле с другими небесными телами).
Получение значения g из закона всемирного тяготения
Таким образом, чтобы найти получить значение ускорения силы тяжести g на уровне моря, необходимо в формулу подставить значения гравитационной постояннойG, массы Земли (в килограммах) m1 и радиуса Земли (в метрах) r :
Следует отметить, что эта формула правомерна для сферического тела при допущении, что вся его масса сосредоточена в его центре. Это позволяет нам использовать величину радиуса Земли для r.
Существуют значительные неопределенности значений r и m1, а также значения гравитационной постоянной G, которую трудно точно измерить.
Если G,g и r известны, то решение обратной задачи позволит получить величину массы Земли.
Гравитационные аномалии применительно к геофизике — отклонения величины гравитационного поля от расчётной, вычисленной на основе той или иной математической модели. Гравитационный потенциал земной поверхности, или геоида, обычно описывается на основании математических теорий с использованием гармонических функций[6]. Эти отклонения могут быть вызваны различными факторами, в том числе:
Земля не является однородной, её плотность различна на разных участках;
Расчётное значение g учитывает только силу тяжести и не учитывает центробежную силу, возникающую за счёт вращения Земли;
При подъёме тела над поверхностью Земли значение g уменьшается («высотная поправка» (см. ниже), аномалия Бугера);
На Землю воздействуют гравитационные поля других космических тел, в частности, приливные силы Солнца и Луны.
Высотная поправка
Первая поправка для стандартных математических моделей, так называемая высотная аномалия[англ.], позволяет учесть изменение величины g в зависимости от высоты над уровнем моря[7]. Используем значения массы и радиуса Земли:
Поправочный коэффициент (Δg) может быть получены из соотношения между ускорением силы тяжести g и гравитационной постоянной G:
, где:
.
На высоте h над поверхностью Земли gh рассчитывается по формуле:
Так, высотная поправка для высоты h может быть выражена:
.
Это выражение может быть легко использовано для программирования или включения в таблицу. Упрощая и пренебрегая малыми величинами (h<<rEarth), получаем хорошее приближение:
.
Используя приведённые выше численные значения выше, и высоту h в метрах, получим:
Учитывая широту местности и высотную поправку, получаем:
,
где — ускорение свободного падения на широте и высоте h. Это выражение можно также представить в следующем виде:
.
Сравнение силы тяготения на Земле с другими небесными телами
В таблице приведены значения величин ускорения свободного падения на поверхности Земли, Солнца, Луны, планет Солнечной системы, ряда спутников и астероидов. Для планет — гигантов под «поверхностью» понимается видимая поверхность, а для Солнца — верхняя граница фотосферы. Данные в таблице не учитывают эффекта центробежной силы от вращения планет и фактически означают значения искомых величин вблизи полюсов планет. Справочно указано время падения объекта на данное небесное тело со 100-метровой высоты и максимальная скорость, достигаемая при этом (сопротивление воздуха не учтено).
Небесное тело
Сила тяжести по сравнению с земной
Ускорение свободного падения на поверхности, м/с2
Примечания
Время падения со 100-метровой высоты/ Достигаемая при этом скорость
↑В. М. Деньгуб, В. Г. Смирнов. Единицы величин. Словарь — справочник. М.: Изд-во стандартов, 1990, с. 237.
↑NASA/JPL/University of Texas Center for Space ResearchPIA12146: GRACE Global Gravity Animation (неопр.). Photojournal. NASA Jet Propulsion Laboratory. Дата обращения: 30 декабря 2013. Архивировано 30 декабря 2013 года.