În geometria diferențială, tensorul Riemann este un tensor de tip (1,3) care codifică în mod complet curbura dintr-o varietate riemanniană. Originea numelui vine de la matematicianul de origine germană Bernhard Riemann și în general este indicată prin intermediul simbolulurilor:
Este un instrument matematic central în teoria relativității generale teorie modernă a gravitației, iar curbura spațiu timpului este în principiu observabilă prin ecuația de abatere geodezică. Tensorul de curbură reprezintă forța de maree experimentată de un corp rigid care se deplasează de-a lungul unei geodezice, într-un sens precizat de ecuația Jacobi.
Bibliografie
en Riemannian Geometry, Manfredo Perdigao do Carmo, 1994
en Foundations of Differential Geometry, Vol. 1 de Shoshichi Kobayashi și Katsumi Nomizu, editura Wiley-Interscience 1996 (Editie noua) isbn=0-471-15733-3