În algebra liniară, produsul extern,[1] (sau produsul diadic[1]) a doi vectori de coordonate este o matrice. Dacă cei doi vectori au dimensiunile n și m, atunci produsul lor exterior este o matrice n × m. Mai general, având în vedere doi tensori (matrici multidimensionale), produsul lor extern este un tensor. Produsul extern al tensorilor este denumit și produsul tensorial(d) al acestora și poate fi folosit pentru a defini algebra tensorială(d).
Fiind dați doi vectori de dimensiunile și
produsul lor extern, notat este matricea obținută prin înmulțirea fiecărui element al cu fiecare element al :[2]
Pentru vectori complecși este adesea util să se ia adjuncta lui denumită sau :
Deosebirea față de produsul intern euclidian
Dacă atunci se poate obține produsul matricial pe altă cale, obținând un scalar (sau o matrice ):
care este produsul intern standard pentru spații vectoriale euclidiene,[4] cunoscut mai bine sub denumirea de produs scalar. Produsul scalar este urma produsului extern.[6] Spre deosebire de produsul scalar, produsul extern este necomutativ.
Înmulțirea unui vector cu o matrice poate fi scrisă în termenii produsului intern, folosind relația .
Produsul extern al tensorilor
Fiind dați doi tensori, cu dimensiunile și , produsul lor extern este un tensor cu dimensiunile și elementele
De exemplu, dacă este de ordinul 3 cu dimensiunile și este de ordinul 2 cu dimensiunile atunci produsul lor extern este de ordinul 5 cu dimensiunile Dacă are o componentă A[2, 2, 4] = 11 iar are o componentă B[8, 88] = 13, atunci componenta formată din produsul extern este C[2, 2, 4, 8, 88] = 143.
Note
^ abEmil Petre, Optimizări, Cap. 1 Introducere în problematica optimizării sistemelor, (curs, 2008), Universitatea din Craiova, p. 1–11, accesat 2023-04-13, (arhivat)