Teorema de Frobenius

Em matemática, mais especificamente na álgebra abstrata, o teorema de Frobenius, provado por Ferdinand Georg Frobenius, em 1877, caracteriza a álgebra de divisão associativa[nota 1] de dimensão finita[nota 2] sobre os números reais[1]. De acordo com o teorema, cada tal álgebra é isomórfica ao um dos seguintes:

  1. (números reais)
  2. (números complexos)
  3. ( Quatérnios)

Estas álgebras têm dimensões 1, 2 e 4, respectivamente. Dessas três álgebras, os números reais e complexos são comutativos, mas os quatérnios não são. Esse teorema está intimamente relacionado com o teorema de Hurwitz[nota 3] [2], que afirma que as únicas álgebras de divisão normalizadas ao longo os números reais são , , , e a (não-associativa) álgebra de octônios ( ).[3] [4]

Referências

  1. SCALAR ALGEBRAS AND QUATERNIONS: AN APPROACH BASED ON THE ALGEBRA AND TOPOLOGY OF FINITE-DIMENSIONAL REAL LINEAR SPACES, PART 1 por RAY E. ARTZ - 2009 [[1]]
  2. THE HURWITZ THEOREM ON SUMS OF SQUARES por KEITH CONRAD [[2]]
  3. Teorema de Frobenius por Ovídio Filho [[3]]
  4. Teorema de Frobenius por Luis Guijarro 2009 [[4]]

Notas

  1. Uma álgebra associativa A é um anel associativo que tem uma estrutura compatível de um espaço vectorial sobre um determinado campo K ou, mais geralmente, de um módulo ao longo de um anel comutativo R.
  2. A dimensão de um espaço vectorial V é a cardinalidade (isto é, o número de vectores) de uma base de V.
  3. O Teorema de Hurwitz, também chamado de "Teorema de 1,2,4 ou 8", em homenagem a Adolf Hurwitz provado por ele em 1898.
Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Read other articles:

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cacus – news · newspapers · books · scholar · JSTOR (May 2012) (Learn how and when to remove this template message) Hercules killing the fire-breathing Cacus, engraving by Sebald Beham (1545) In Greek and Roman mythology, Cacus (Ancient Greek: Κάκος,[1...

 

NHL 1933/34 Liga National Hockey League Zeitraum 9. November 1933 bis 10. April 1934 Teams 9 Spiele/Team 48 Reguläre Saison Sieger Toronto Maple Leafs MVP Kanada 1921 Aurèle Joliat (Montréal Canad.) Topscorer Kanada 1921 Charlie Conacher (Toronto) Playoffs Stanley-Cup-Sieger Chicago Black Hawks Finalist Detroit Red Wings NHL-Saisons ◄ vorherige nächste ► Die NHL-Saison 1933/34 war die 17. Spielzeit in der National Hockey League. Neun Teams spielten jeweils 48 Spiele. Den Stanley ...

 

 Nota: Se procura pelo secretário-geral do Partido Comunista da União Soviética, consulte Leonid Ilitch Brejnev; para demais casos, veja Brezhnev (desambiguação). Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Fevereiro de 2022) Naberezhnye TchelnyНабережные Чел...

Motorcycle races in Montmeló   2023 Catalan Grand PrixRace detailsRace 11 of 20 races in the2023 Grand Prix motorcycle racing seasonDate2–3 September 2023Official nameGran Premi Monster Energy de CatalunyaLocationCircuit de Barcelona-CatalunyaMontmeló, SpainCoursePermanent racing facility4.657 km (2.894 mi)MotoGPPole positionRider Francesco Bagnaia DucatiTime 1:38.639 Fastest lapRider Maverick Viñales DucatiTime 1:40.343 on lap 3 PodiumFirst Aleix Espargaró ApriliaSe...

 

Irish website JoeTypeOnline newspaperOwner(s)Greencastle Capital, David SeftonFounder(s)Niall McGarryEditorPaddy McKennaFounded2010 (2010)Circulation2 million unique visitors per month[1]Websitejoe.ie joe.co.uk JOE (JOE.ie and JOE.co.uk) is a left-leaning distributed social media publisher aimed at young people in Ireland and the United Kingdom, with over 2 million unique visitors per month.[1] It is owned by Greencastle Media Group, which is itself owned by David Sefton,...

 

Mauzoleum Walki i Męczeństwaw Warszawie Oddział Muzeum Niepodległości Fragment ekspozycji w Mauzoleum Walki i Męczeństwa Państwo  Polska Miejscowość Warszawa Adres al. Jana Chrystiana Szucha 2500–580 Warszawa Data założenia 18 kwietnia 1952 Kierownik Andrzej Kotecki Położenie na mapie WarszawyMauzoleum Walki i Męczeństwaw Warszawie Położenie na mapie PolskiMauzoleum Walki i Męczeństwaw Warszawie Położenie na mapie województwa mazowieckiegoMauzoleum Walki i Męcze...

Portal Artikel ini adalah bagian dari ProyekWiki Anime dan Manga, yang bertujuan untuk melengkapi dan mengembangkan artikel bertemakan anime dan manga di Wikipedia. Bila Anda tertarik, Anda dapat menyunting artikel ini dan/atau mengunjungi halaman proyek ini. Artikel ini telah dinilai oleh ProyekWiki Anime dan Manga sebagai rintisan bertopik anime dan manga.

 

1960 Hindi Movie For the 2015 Malayalam film, see Kohinoor (2015 film). KohinoorDirected byS. U. SunnyProduced byV. N. SinhaStarringDilip KumarMeena KumariLeela ChitnisEdited byMoosa MansoorMusic byNaushadRelease date 6 May 1960 (1960-05-06) [1]Running time151 minutesCountryIndiaLanguageHindiBox office1.5 crore [2] Kohinoor is a 1960 Bollywood action adventure film produced by V. N. Sinha and directed by S. U. Sunny. The film stars Dilip Kumar, Meena Kumari, Lee...

 

John Stuart Mill perumus metode Mill Metode Mill adalah lima metode induksi yang dikemukakan oleh John Stuart Mill (1806–1873) dalam bukunya tahun 1843 A System of Logic.[1] Pada awalnya Mill merumuskan empat metode induksi yaitu: metode persetujuan, metode perbedaan, metode persamaan variasi, metode sisasisihan. Kemudian orang sesudah Mill datang menambah satu metode lagi yaitu metode gabungan persetujuan dan perbedaan.[2] Gambaran Umum Kritik terhadap induksi Enumerasi Sed...

Indian woman (1926–1987) For other uses, see Shanti Devi (disambiguation). Shanti DeviBorn(1926-12-11)December 11, 1926Delhi, IndiaDiedDecember 27, 1987(1987-12-27) (aged 61)NationalityIndianKnown forAlleged reincarnation Shanti Devi (12 December 1926 – 27 December 1987), known as Lugdi Devi (18 January 1902 – 4 October 1925) in her alleged past life, was an Indian woman who claimed to remember her previous life, and became the subject of reincarnation research. A commission s...

 

IceArenAFormer namesIce Arena Mt Thebarton Snow and Ice Snowdome AdelaideLocationThebarton, South AustraliaCoordinates34°55′11″S 138°34′41″E / 34.91972°S 138.57806°E / -34.91972; 138.57806OperatorSAISFCapacity2,000Surface56 metres × 26 metres (Second rink 30m x 15m)ScoreboardLEDConstructionBroke ground1980Built1980-1981Opened17 September 1981 (42 years ago) (17 September 1981)Renovated1987 (Mt Thebarton)TenantsLessee is the Ice Factor Foundation I...

 

‹ The template below (Archive) is being considered for merging. See templates for discussion to help reach a consensus. ›This page is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Acronyms Thanks for your contributions. I see that you have created articles about Mexican politicians such as Julio César Aguirre Méndez and Ángel Alonso Díaz Caneja. In the articles...

Provisional government of the Kingdom of Mysore form 1831 to 1881 Chief Commissioner of the Kingdom of MysoreStatusAbolishedReports toGovernor-General of IndiaResidenceBangaloreAppointerGovernor-General of IndiaFormation19 October 1831Abolished22 February 1881 The Mysore Commission, also known as commissioners' rule or simply the Commission Rule,[1] was a period and form of government in the history of the Kingdom of Mysore and the neighbouring province of Coorg from 1831 to 1881 when...

 

American writer Seredy redirects here. For the Roman Catholic cardinal, see Jusztinián György Serédi. Kate SeredyBorn(1899-11-10)November 10, 1899[a]Budapest, HungaryDiedMarch 7, 1975(1975-03-07) (aged 75)Middletown, New YorkOccupationWriter, illustratorLanguageEnglishNotable works (Text and illustrations) The Good Master The White Stag The Singing Tree Notable awardsNewbery Medal 1938 Kate Seredy (November 10, 1899 – March 7, 1975) was an American writer and illustrator of ...

 

Laredo National BankTypefoundation = 1892IndustryFinance and InsuranceHeadquartersLaredo, TexasProductsBanking Investments InsuranceRevenue$3.5 billion USD (FY 2006) prior to mergerWebsitewww.lnb.com The Laredo National Bank's building is the fourth tallest building in Laredo, Texas The Walker Plaza housed the South Texas National Bank a subsidiary of LNB, today all South Texas National Banks were renamed Laredo National Bank. The Laredo National Bank (LNB)[1] was a Texas bank founded...

Уиз Халифа с синглом «See You Again» 14 недель не покидал 1-й позиции чарта. The Weeknd лидировал с 3 разными синглами в сумме 17 недель. Список R&B синглов № 1 в США в 2015 году составлен на основе еженедельного хит-парада лучших песен в стилях ритм-энд-блюз и хип-хоп в США 2015 года, публи...

 

Gereja PenggandaanBagian luar gerejaAgamaAfiliasi agamaGereja Katolik RomaKepemimpinanBenediktinDiberkati1982LokasiLokasi Tabgha, IsraelKoordinat32°52′24″N 35°32′55″E / 32.87333°N 35.54861°E / 32.87333; 35.54861Koordinat: 32°52′24″N 35°32′55″E / 32.87333°N 35.54861°E / 32.87333; 35.54861ArsitekturRampung1982 Gereja Penggandaan Roti dan Ikan, atau kependekannya adalah Gereja Penggandaan), adalah sebuah gereja Katolik yang ...

 

Untuk aktivitas vulkanis dan gempa bumi di Pasifik, lihat Cincin Api Pasifik. Untuk film, lihat Pacific Rim (film). Untuk kegunaan lain, lihat Pacific Rim (disambiguasi). Negara-negara yang memiliki wilayah di Lingkar Pasifik. Lingkar Pasifik (Pacific Rim) adalah daratan di sepanjang Samudra Pasifik. Basin Pasifik mencakup Lingkar Pasifik dan pulau-pulau di Samudra Pasifik.[1] Sebagian besar wilayah di Lingkar Pasifik membentang di geologi Cincin Api Pasifik. Daftar negara di Lingkar ...

Species of crab Jonah crab Conservation status Secure (NatureServe)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Malacostraca Order: Decapoda Suborder: Pleocyemata Infraorder: Brachyura Family: Cancridae Genus: Cancer Species: C. borealis Binomial name Cancer borealisStimpson, 1859 The Jonah crab (Cancer borealis) is a marine brachyuran crab that inhabits waters along the east coast of North America from Newfoundland to Florida.&...

 

Regiones naturales del Perú de acuerdo con los parámetros de Javier Pulgar Vidal. Las ocho regiones naturales del Perú es una tesis del geógrafo peruano Javier Pulgar Vidal formulada en 1938, que busca hacer una división sistemática del Perú en regiones naturales según las características del relieve principalmente, pisos altitudinales, datos del clima, flora y fauna. Así como también, se baso en nociones geográficas de las antiguas culturas de los Andes, que pasaron a entrar en d...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!