Equação integral de Volterra

Em matemática, uma equação integral de Volterra é um tipo especial de equação integral. Tais equações são divididas em dois grupos, referenciados como do primeiro e do segundo tipo.

Uma equação de Volterra do primeiro tipo é expressa na forma

enquanto uma equação de Volterra do segundo tipo é dada por

Na teoria dos operadores e na teoria de Fredholm, as equações correspondentes são denominadas operadores de Volterra. Uma equação integral de Volterra é uma convolução, se

A função na integral é denominada núcleo (em inglês: kernel). Tais equações podem ser analisadas e resolvidas utilizando transformadas de Laplace.

As equações integrais de Volterra foram introduzidas por Vito Volterra, e então estudadas por Traian Lalescu em sua tese de doutorado 1908, Sur les équations de Volterra, sob orientação de Charles Émile Picard. Lalescu escreveu em 1911 o primeiro livro sobre equações integrais.

Bibliografia

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!