Após estas alterações de circunscrição, a monofilia de DPANN ainda não é considerada estabelecida, devido à alta taxa de mutação dos filos incluídos, o que pode levar ao artefato da atração de ramo longo (LBA), onde as linhagens são agrupados basalmente ou artificialmente na base da árvore filogenética sem serem filogeneticamente relacionadas.[5][6] Essas análises sugerem que DPANN pertence ao clado Euryarchaeota ou então é polifilético ocupando várias posições dentro de Euryarchaeota.[5][6][7]
O clado DPANN agrupa diferentes filos com uma grande variedade de distribuição ambiental e de metabolismo, variando de formas simbióticas e termofílicas, como Nanoarchaeota, e acidófilos, como Parvarchaeota, até não-extremófilos, como Aenigmarchaeota e Diapherotrites. A presença de membro do agrupamento DPANN também foi detectado em águas subterrâneas ricas em nitrato, na superfície da água, mas não em profundidade, indicando que esses táxons ainda são difíceis de localizar.[8]
Morfologia
Os membros deste agrupamento são caracterizados por serem pequenos em tamanho em comparação com outros Archaea (tamanho nanométrico) e de apresentarem um genoma muito pequeno. Em consequência, são caracterizados por capacidades catabólicas limitadas, mas suficientes para levar uma vida livre, embora muitos sejam epissimbiontes que dependem de uma associação simbiótica ou parasitária com outros organismos. Muitas de suas características são semelhantes ou análogas às de bactérias ultrapequenas (grupo CPR).[3]
As capacidades metabólicas limitadas são um produto do pequeno genoma e são refletidas no facto de que muitos não possuem vias biossintéticas centrais para nucleotídeos, aminoácidos e lípidos. Em condequência, a maioria das archaea DPANN, como o grupo conhecido por ARMAN, depende de outros micróbios para satisfazer as suas necessidades biológicas. Mas aqueles que têm potencial para viver livremente são fermentativos e aeróbicosheterotróficos.[3]
Apesar das grandes variações que coexistem dentro do grupo, a maioria destes organismos são principalmente anaeróbicos e não podem ser cultivados. Ocorrem em ambientes extremos, como organismos termofílicos, hiperacidofílicos, hiperhalofílicos ou resistentes a metais, embora muitas espécies ocorram também no ambiente temperado de sedimentos marinhos e lacustres. Estes microorganismos são raramente encontrados no solo ou em mar aberto.[3]
Uma descrição resumida dos agrupamentos presentemente considerados como significativos é a seguinte:
Diapherotrites — encontrado pela análise filogenética dos genomas recuperados da infiltração de águas subterrâneas de uma mina de ouro abandonada nos EUA;[14][15]
Woesearchaeota e Pacearchaeota — organismos identificados tanto em sedimentos quanto em águas superficiais de aquíferos e lagos, abundantes principalmente em condições salinas;[3][19]
Aenigmarchaeota — ocorrem em águas residuais de minas e em sedimentos de fontes termais;[20]
Nanoarchaeota — foram os primeiros organismos deste grupo descobertos (em 2002) numa fonte hidrotermal próxima da costa da Islândia. Vivem como simbiontes de outras Archaea.[22][23]
Essa estrutura conduz à seguinte taxonomia do superfilo DPANN:Rinke et al. 2013
Tom A. Williams et al. 2017,[24] Castelle et al. 2015[3] e Dombrowski et al. 2020.[25]
Jordan et al. 2017[7] Cavalier-Smith2020[6] e Feng et al 2021.[26]
DPANN pode ser o primeiro clado divergente de Archaea de acordo com algumas análises filogenéticas. Análises filogenéticas recentes encontraram a seguinte filogenia entre os filos:[3][24][25]
Outras análises filogenéticas sugeriram que DPANN poderia pertencer a Euryarchaeota ou que pode até ser polifilético, ocupando diferentes posições dentro de Euryarchaeota. Também é questionado se o filo Altiarchaeota deve ser classificado em DPANN ou integrado em Euryarchaeota.[25][5] Os grupos marcados entre aspas são linhagens atribuídas ao DPANN, mas separadas filogeneticamente das demais. Uma localização alternativa para DPANN na árvore filogenética é a seguinte:[7][6][26]
↑Castelle CJ, Banfield JF (2018). «Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life». Cell. 172 (6): 1181–1197. PMID29522741. doi:10.1016/j.cell.2018.02.016
↑ abcdefgCastelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF (Março 2015). «Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling». Current Biology. 25 (6): 690–701. PMID25702576. doi:10.1016/j.cub.2015.01.014
↑Spang A, Caceres EF, Ettema TJ (agosto 2017). «Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life». Science. 357 (6351): eaaf3883. PMID28798101. doi:10.1126/science.aaf3883