Test dla jednej próby (zwany też testem zgodności λ Kołmogorowa) sprawdza, czy rozkład w populacji dla pewnej zmiennej losowej różni się od założonego rozkładu teoretycznego, gdy znana jest jedynie pewna skończona liczba obserwacji tej zmiennej (próba statystyczna). Często wykorzystywany jest on w celu sprawdzenia, czy zmienna ma rozkład normalny. Dla celów testowania normalności zostały dokonane w teście drobne usprawnienia, znane jako test Lillieforsa.
Istnieje też wersja testu dla dwóch prób, pozwalająca na porównanie rozkładów dwóch zmiennych losowych. Jego zaletą jest wrażliwość zarówno na różnice w położeniu, jak i w kształcie dystrybuantyempirycznej porównywanych próbek.
Statystyka Kołmogorowa-Smirnowa
Dystrybuanta empiryczna dla n-elementowej próby jest zdefiniowana jako funkcja:
Jeśli jest ciągła, wówczas w warunkach hipotezy zerowej dąży do rozkładu Kołmogorowa, niezależnie od Ten wynik znany jest też jako twierdzenie Kołmogorowa.
Test Kołmogorowa-Smirnowa jest konstruowany z użyciem obszaru krytycznego rozkładu Kołmogorowa.
Hipoteza zerowa jest odrzucana na poziomie jeśli
gdzie jest dane przez:
Asymptotyczna moc tego testu wynosi 1. Jeśli forma lub parametry są wyznaczane z nierówność może nie być prawdziwa. W tym przypadku konieczne jest zastosowanie metody Monte Carlo lub innych algorytmów.
Bardziej znaną formą tego testu jest:
Test dla dwóch prób
Test Kołmogorowa-Smirnowa może być także użyty do sprawdzenia, czy dwa jednowymiarowe rozkłady prawdopodobieństwa różnią się od siebie. W takim przypadku statystyką Kołmogorowa-Smirnowa jest:
a hipoteza zerowa jest odrzucana na poziomie gdy
Przedział ufności dla kształtu dystrybuanty
Chociaż test Kołmogorowa-Smirnowa jest zwykle używany do sprawdzania, czy dana dystrybuanta teoretyczna opisuje rozkład populacji, z której wylosowano próbę o dystrybuancie empirycznej jednak procedura może być odwrócona w celu uzyskania przedziału ufności dla samej funkcji Wybierając wartość krytyczną dla statystyki testowej taką, że uzyskujemy pas o promieniu wokół który całkowicie zawiera z prawdopodobieństwem
W.T. Eadie, D. Drijard, F.E. James, M. Roos, B. Sadoulet: Statistical Methods in Experimental Physics. Amsterdam: North-Holland, 1971, s. 269–271.
Alan Stuart, Keith Ord, Steven Arnold: Kendall’s Advanced Theory of Statistics. T. 2A. London: Arnold, a member of the Hodder Headline Group, 1999, s. 25.37–25.43.