Oppervlakte

Dit artikel gaat over de maat van een tweedimensionale figuur; zie oppervlak voor andere betekenissen.

De oppervlakte van een vlakke meetkundige figuur, of algemener van een tweedimensionaal meetkundig object, is een maat voor de grootte ervan.

De SI-eenheid van oppervlakte is de vierkante meter: m², afgeleid van de basiseenheid meter. Voor algemene toepassingen in de Europese Unie is de vierkante meter, samen met zijn decimale onderdelen en veelvouden zoals cm² en km², de enige oppervlaktemaat. In gespecialiseerde toepassingen bestaan uitzonderingen:

In historische documenten uit de Nederlanden die van voor het metriek stelsel dateren, komen andere landmaten voor zoals de bunder, de dagwand en de roede.

Vlakke meetkunde

Basistechnieken

De oppervlakte van een vlakke figuur wordt gedefinieerd en berekend aan de hand van een aantal elementaire eigenschappen van het begrip oppervlakte, die eventueel kunnen worden opgevat als axioma's:

  1. De oppervlakte is een isometrische invariant, dat wil zeggen dat een transformatie van het vlak die de onderlinge afstanden van punten bewaart (zoals een rotatie), tevens de oppervlakte van vlakke figuren bewaart.
  2. De oppervlakte van een rechthoek is het product van de lengte met de breedte. In het bijzonder is de oppervlakte van een punt en die van een lijnstuk gelijk aan 0.
  3. De oppervlakte van een disjuncte vereniging van vlakke figuren is gelijk aan de som van de oppervlakten van de afzonderlijke delen. Dit laat achtereenvolgens de oppervlakteberekening toe van: (1) een parallellogram, door omvorming tot een rechthoek met dezelfde basis en hoogte; (2) een willekeurige driehoek, als zijnde de helft van een parallellogram; (3) een willekeurige veelhoek, door hem op te delen in driehoeken.
  4. De regel van de disjuncte vereniging blijft gelden voor een aftelbaar oneindige disjuncte vereniging, waarbij de som van de oppervlakten moet worden opgevat als de som van een reeks.

De laatste regel laat toe de oppervlakte te bepalen van kromlijnige figuren zoals cirkels. De integraalrekening geeft een exacte definitie en een berekeningsmethode voor de oppervlakte van een vlakke figuur die begrensd wordt door de grafiek van een continue functie en een horizontale en twee verticale rechten.

Formules

Figuur Kenmerken Oppervlakte
vierkant zijde
rechthoek lengte en breedte
rechthoekige driehoek rechthoekszijden en
driehoek basis hoogte
driehoek zijden en halve omtrek (formule van Heron)
driehoek zijden en tussenliggende hoek
trapezium evenwijdige zijden en hoogte
ruit diagonalen en
parallellogram basis hoogte
parallellogram zijden en tussenliggende hoek [1]
regelmatige -hoek zijde
regelmatige zeshoek zijde
cirkel straal
ellips halve lange as halve korte as

In sommige toepassingen is het nuttig met negatieve oppervlaktes te rekenen als de omtrek van een figuur in een andere zin wordt doorlopen (conventioneel geeft tegenwijzerzin een positieve oppervlakte). We spreken dan in het algemeen van georiënteerde oppervlakte.

De schoenveterformule is een eenvoudige regel voor de oppervlakte van een willekeurige veelhoek in termen van de coördinaten van de hoekpunten

Ze kan worden bewezen door op te merken dat de georiënteerde oppervlakte is van de driehoek gevormd door de oorsprong en de punten en

Zwaartepunt

Zie Zwaartepunt voor het hoofdartikel over dit onderwerp.

Het zwaartepunt van een vlakke figuur heeft de eigenschap dat elke rechte erdoorheen, de figuur in twee delen van gelijke oppervlakte snijdt. De zwaartelijnen van een driehoek vormen hiervan een voorbeeld.

Isoperimetrische ongelijkheid

De oppervlakte van een cirkel is gelijk aan het kwadraat van zijn omtrek gedeeld door :

De isoperimetrische ongelijkheid stelt dat deze verhouding optimaal is, in die zin dat voor eender welke andere vlakke figuur het isoperimetrisch quotiënt

niet groter is dan 1, en dat het alleen bij de cirkel precies gelijk is aan 1.

Voorbeeld

Bij een vierkant met zijde bedraagt de omtrek en de oppervlakte , dus

Oppervlakte binnen een gesloten vlakke kromme

Als een stuksgewijs differentieerbare gesloten vlakke kromme is zonder zelfdoorsnijdingen en met het inwendige aan de linkerkant, dan volgt uit de stelling van Green een formule voor de oppervlakte van het inwendige:

Voorbeeld

De cirkel met straal kan worden geparametriseerd als

Uit de eerste gelijkheid van de oppervlakteformule hierboven volgt dan

Maattheorie

Zie Maattheorie voor het hoofdartikel over dit onderwerp.

De maattheorie definieert het begrip oppervlakte aan de hand van een abstracte maat. In de axioma's van een maat zit een regel vervat voor de disjuncte unie van een aftelbare collectie meetbare verzamelingen. Voor vlakke tweedimensionale figuren hanteert men de lebesgue-maat op .

Voor gekromde oppervlakken bestaat enerzijds het volumebegrip uit de differentiaalmeetkunde, anderzijds de haar-maat uit de theorie der lokaal compacte groepen. Zo kunnen oppervlaktes worden toegekend aan een grote klasse van deelverzamelingen van willekeurige tweedimensionale gekromde ruimten, waaronder alle compacte deelverzamelingen.

Ruimtemeetkunde

Formules voor de oppervlakte van driedimensionale lichamen

Voor figuren die zijn samengesteld uit tweedimensionale deelruimten van de driedimensionale ruimte, blijven de basisregels (isometrisch invariant, reekssom van disjuncte unie) geldig. Als een figuur uitsluitend rechte zijvlakken heeft, is er niets nieuws; zo is de oppervlakte van een kubus gewoon 6 keer de oppervlakte van een van de 6 identieke vierkanten die hem begrenzen.

Een gesloten cilinder wordt begrensd door twee vlakke cirkels en een gekromde rechthoek. De oppervlakte van de rechthoek is de hoogte van de cilinder vermenigvuldigd met zijn omtrek.

Figuur Kenmerken Oppervlakte
bol straal
bolsegment bolstraal , hoogte
bolkap bolstraal , halve openingshoek
cilinder (open) straal , hoogte
cilinder (onder- en bovenzijde afgesloten) straal , hoogte
cilinder (algemeen grondvlak, open) omtrek grondvlak , hoogte
kegel (open) straal , hoogte
kegel (gesloten) straal , hoogte

Voor de oppervlakte van een ellipsoïde met halve assen en bestaat geen formule die alleen elementaire functies gebruikt. Met behulp van elliptische integralen kan wel een gesloten formule worden opgeschreven. De oppervlakte van een sferoïde (een omwentelingsellipsoïde, dus met ) heeft daarentegen wel een elementaire gesloten vorm.

Ruimtehoek

Zie Ruimtehoek voor het hoofdartikel over dit onderwerp.

Een ruimtehoek wordt begrensd door een regeloppervlak bestaande uit stralen die door één punt gaan (onregelmatige kegel). De grootte van een ruimtehoek is de oppervlakte die de ruimtehoek uitsnijdt van een bol met straal 1 rond de top van de kegel. Ruimtehoeken worden standaard uitgedrukt in steradialen. De volledige bol bepaalt een ruimtehoek van sr.

Omwentelingsintegraal

Zie Omwentelingsintegraal voor het hoofdartikel over dit onderwerp.

Een omwentelingslichaam ontstaat door de grafiek van een continue functie (op een begrensd reëel interval ) te roteren rond de -as. Als het voorschrift van de functie is, en de functie is continu differentieerbaar, dan bedraagt de oppervlakte van (de ronde zijkant van) het omwentelingslichaam:

waar de afgeleide is van de functie

Voorbeeld

De bol met straal kan worden opgevat als het omwentelingslichaam voortgebracht door de functie

De afgeleide bedraagt

De oppervlakte is dus

Algemeen gekromd oppervlak

Als een deel van een gekromd oppervlak in de driedimensionale ruimte bepaald wordt door de grafiek van een continu differentieerbare functie

dan wordt de oppervlakte van die grafiek gegeven door de integraalformule

Voorbeeld

We berekenen de oppervlakte van het ronde zadel (hyperbolische paraboloïde) dat de grafiek vormt van de functie

op de eenheidsschijf

De partiële afgeleiden van zijn

Dit geeft voor de oppervlakte volgens bovenstaande algemene formule

Overgang op poolcoördinaten herleidt dit tot

Minimaaloppervlak

Zie Minimaaloppervlak voor het hoofdartikel over dit onderwerp.

Een minimaaloppervlak in de driedimensionale ruimte is een oppervlak waarvan de gemiddelde kromming overal 0 bedraagt. Dit is gelijkwaardig met de eigenschap dat het oppervlak in de omgeving van elk punt de oppervlakte minimaliseert. Het fysische model van een minimaaloppervlak is een zeepvlies dat wordt opgespannen binnen een gekromde draad: door de oppervlaktespanning van de zeepoplossing zoekt het zeepvlies vanzelf naar de kleinste oppervlakte binnen de draad. Platte vlakken zijn minimaaloppervlakken, maar ook het omwentelingslichaam van een kettinglijn is minimaal.

Wikibooks heeft meer over dit onderwerp: Cursus wiskunde: Oppervlakte.

Read other articles:

Hapax legomenon merupakan sebuah istilah dalam bahasa Yunani (ἅπαξ λεγόμενον, harafiah berarti [sesuatu] yang diucapkan [hanya] sekali) yang menunjuk pada sebuah kata yang hanya muncul sekali dalam sebuah teks, sebuah karya seorang pengarang, atau semua dokumen tertulis yang menggunakan sebuah bahasa. Hapax legomenon merupakan suatu transliterasi kata Yunani ἅπαξ λεγόμενον, artinya (sesuatu yang) dikatakan (hanya) satu kali.[1] Nilai penting Hapax legomena ...

 

Israeli footballer Eli Ohanaאלי אוחנה Ohana in 1991Personal informationFull name Eliyahu OhanaDate of birth (1964-02-01) 1 February 1964 (age 59)Place of birth JerusalemPosition(s) Attacking midfielderSecond strikerStrikerTeam informationCurrent team Beitar Jerusalem (chairman)Senior career*Years Team Apps (Gls)1980–1987 Beitar Jerusalem 172 (70)1987–1990 KV Mechelen 52 (10)1990–1991 S.C. Braga 25 (3)1991–1999 Beitar Jerusalem 172 (82)International career‡1984–1997 Is...

 

Tata LPTA 713 TC Tata LPTA 713 TCВиробник Tata MotorsРоки виробництва з 1999Місце виробництва  ІндіяКлас 4x4Двигун(и) Tata Cummins 6BT dieselДовжина 5750 ммШирина 2160 ммВисота 2850 ммМаса 5150 кгНайвища швидкість 82 км/годСпоріднені TATA LPT-613Подібні ГАЗ-66/ГАЗ-3308 Tata LPTA 713 TC — індійський армійський вантажний авт

Christodora House Christodora HouseUbicación Christodora House Ubicación en Ciudad de Nueva YorkCoordenadas 40°43′35″N 73°58′50″O / 40.726389, -73.980556Dirección 147 Ave. BUbicación Nueva York Nueva YorkCondado (s) Nueva YorkDatos generalesAgregado al NRHP 01986-03-20 20 de marzo de 1986Núm. de referencia 86000486[1]​[editar datos en Wikidata] El Christodora House es un edificio histórico ubicado en Nueva York, Nueva York. El Christodora H...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) روجر همفريز معلومات شخصية الميلاد 30 يناير 1944 (79 سنة)[1]  بيتسبرغ  مواطنة الولايات المتحدة  الحياة العملية المهنة معلم موسيقى،  وعازف جاز  موظف...

 

Zorge Gemeinde Walkenried Wappen von Zorge Koordinaten: 51° 38′ N, 10° 38′ O51.63666666666710.634722222222340Koordinaten: 51° 38′ 12″ N, 10° 38′ 5″ O Höhe: 340 m ü. NHN Fläche: 2,21 km² Einwohner: 984 (31. Dez. 2015)[1] Bevölkerungsdichte: 445 Einwohner/km² Eingemeindung: 1. November 2016 Postleitzahl: 37445 Vorwahl: 05586 Zorge (Niedersachsen) Lage von Zorge in Niedersachsen Bli...

Peristiwa MemaliBagian dari Sejarah MalaysiaTanggal19 November 1985LokasiMemali, Siong, Baling,Kedah, Malaysia5°48′57″N 100°53′40″E / 5.815754°N 100.894549°E / 5.815754; 100.894549Koordinat: 5°48′57″N 100°53′40″E / 5.815754°N 100.894549°E / 5.815754; 100.894549Hasil Kemenangan Pemerintah Malaysia Ibrahim Mahmud tewas. Penangkapan massal pengikut Ibrahim. Hubungan Pekembar dan PAS memburuk hingga 2019.Pihak terlibat Pemeri...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Dia Idolaku – berita · surat kabar · buku · cendekiawan · JSTOR Dia IdolakuSingel oleh Nike AstrinaDipublikasi09 September 1989 (1989-09-09)Dirilis20 Juni 2023 (2023-06-20)Direkam1989 (198...

 

Baseball team in California Monterey AmberjacksInformationLeaguePecos League (Pacific Division)LocationMonterey, CaliforniaBallparkFrank E. Sollecito, Jr. BallparkFounded2016ColorsNavy blue, gold, blue, silver, white          OwnershipPecos LeagueManagerTom FitzpatrickWebsitemontereyamberjacks.com The Monterey Amberjacks were a professional baseball team based in Monterey, California, which began play in 2017.[1] The team is a member of the Pecos League, ...

Second Al-Thani CabinetCabinet of LibyaDate formed29 September 2014Date dissolved15 March 2021People and organisationsHead of stateAguila Saleh IssaHead of governmentAbdullah al-ThaniHistoryPredecessorMaiteeq CabinetSuccessorGovernment of National Unity (merged with Government of National Accord)de facto Government of National Stability Politics of Libya Member State of the Arab League Constitution 2017 draft constitution 2011 Constitutional Declaration (Basic Law) 1977 People's Authority 196...

 

Primary scripture of Sikhism Guru Granth Sahibਗੁਰੂ ਗ੍ਰੰਥ ਸਾਹਿਬIlluminated Guru Granth Sahib folio with nisan (Mul Mantar) in the penmanship of Guru Gobind SinghInformationReligionSikhismLanguageSant Bhasha(Punjabi and its dialects, Lahnda, regional Prakrits, Apabhramsa, Sanskrit, Hindustani languages (Brajbhasha, Bangru, Awadhi, Old Hindi, Deccani), Bhojpuri, Sindhi, Marathi, Marwari, Bengali, Persian and Arabic)[1][2] Part of a series onSikhism Peo...

 

Untuk tempat yang bernama Saint-Jean, secara keseluruhan atau sebagiannya, lihat Saint-Jean. Peta infrastruktur dan tata guna lahan di Komune Saint-Jean-les-Deux-Jumeaux.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiSaint-Jean-les-Deux-JumeauxNegaraPrancisArondisemenMeauxKantonLa Ferté-sous-JouarreAntarkomuneCommunauté de communes du Pays FertoisPemerintahan&#...

Прем'єр-лігаСезон 2009—2010Чемпіони «Шахтар»Вибули «Чорноморець»«Закарпаття»Ліга чемпіонів «Динамо»«Шахтар»Ліга Європи «Металіст»«Дніпро»«Карпати»«Таврія»Зіграно матчів 240Забито голів 597 (2.49 за гру)Найкращий бомбардир Артем Мілевський («Динамо») — 17Найбільша пе...

 

Plucked string instrument Adungu arched harp. Fingering African arched harp(Adungu) African Harps, particularly arched or bow harps, are found in several Sub-Saharan African music traditions, particularly in the north-east. Used from early times in Africa, they resemble the form of harps in ancient Egypt with a vaulted body of wood, parchment faced, and a neck, perpendicular to the resonant face, on which the strings are wound. Ancient Egyptian harps The oldest depictions of harps without a f...

 

Peter StretchPersonal detailsBorn(1670-10-14)October 14, 1670Leek, Staffordshire, EnglandDiedSeptember 11, 1746(1746-09-11) (aged 76)Philadelphia, PennsylvaniaPolitical partyIndependentSpouseMargery HallChildrenThomas Stretch, Daniel Stretch, William Stretch, Joseph Stretch, Elizabeth Stretch, Sarah StretchProfessionClockmakerSignature Peter Stretch (October 14, 1670 – September 11, 1746) was among the most prominent early American clockmakers and among the first makers of scientific i...

Small Town in Kerala, India Town in Kerala, IndiaMananthavadyTownMananthavadyLocation in Kerala, IndiaShow map of KeralaMananthavadyMananthavady (India)Show map of IndiaCoordinates: 11°48′N 76°0′E / 11.800°N 76.000°E / 11.800; 76.000Country IndiaStateKeralaDistrictWayanadGovernment • BodyMunicipality • Member of ParliamentRahul Gandhi (Indian National Congress)Area • Total80.1 km2 (30.9 sq mi)Elevation760&...

 

TirtoKecamatanPeta lokasi Kecamatan TirtoNegara IndonesiaProvinsiJawa TengahKabupatenPekalonganPemerintahan • Camat-Populasi • Total68,494 jiwa (BPS 2.013) jiwaKode Kemendagri33.26.15 Kode BPS3326150 Luas17,39 km²Desa/kelurahan16 Tirto (Jawa: ꦠꦶꦂꦠ, translit. Tirta) adalah sebuah kecamatan di Kabupaten Pekalongan, Provinsi Jawa Tengah, Indonesia. Kecamatan ini berjarak sekitar 20 km dari ibu kota Kabupaten Pekalongan ke arah utara melalui Bojong. ...

 

1942 film Thunder RockDirected byRoy BoultingWritten byBernard MilesJeffrey DellBased onThunder Rockby Robert ArdreyProduced byJohn BoultingStarringMichael RedgraveBarbara MullenJames MasonLilli PalmerCinematographyMutz GreenbaumEdited byRoy BoultingMusic byHans MayProductioncompanyCharter Film ProductionsDistributed byMetro-Goldwyn-Mayer (UK)English Films (US)Release date 4 December 1942 (1942-12-04) Running time112 minutesCountryUnited KingdomLanguageEnglish Thunder Rock is a...

Mapa de Portugal Continental. Portugal Continental es la designación que recibe la parte de Portugal que corresponde a la península ibérica y, por tanto, al continente europeo. Este término se usa para distinguir el territorio continental de Portugal (conocido también como El Continente - O Continente) del territorio insular de Portugal, que se compone de los archipiélagos de las Azores y de Madeira, en el océano Atlántico. Además, es una división NUTS y de distritos. Los archipiél...

 

SC2000 (Sprengbombe Cylindrisch 2000 — Фугасная Бомба Цилиндрическая 2000 кг) — германская авиационная фугасная бомба периода Второй Мировой Войны. Содержание 1 ТТХ 2 Подвеска 3 Литература 4 См. также 5 Ссылки ТТХ Тип: Фугасная авиационная бомба Общая длина: 3467 мм Длина корпуса: 2692 мм Ди...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!