आर भाषेची क्षमता पॅकेजेस (छोटे प्रोग्रॅम) लिहून आणि ती इम्पोर्ट करून वाढवता येते. कुणीही पॅकेज लिहू शकतो. आर साठी ५,५०० पॅकेजेस उपलब्ध आहेत आणि ती दिवसेंदिवस वाढतच आहेत.
RGUI – comes with the pre-compiled version of R for Microsoft Windows.
Tinn-R– an open source, highly capable integrated development environment featuring syntax highlighting similar to that of MATLAB. Only available for Windows
Java Gui for R – cross-platform stand-alone R terminal and editor based on Java (also known as JGR).
Deducer – GUI for menu driven data analysis (similar to SPSS/JMP/Minitab).
Rattle GUI – cross-platform GUI based on RGtk2 and specifically designed for data mining.
R Commander – cross-platform menu-driven GUI based on tcltk (several plug-ins to Rcmdr are also available).
RapidMiner[28][29]
RExcel – using R and Rcmdr from within Microsoft Excel.
RKWard – extensible GUI and IDE for R.
RStudio – cross-platform open source IDE (which can also be run on a remote linux server).
Revolution Analytics <http://www.revolutionanalytics.com/> provides a Visual Studio based IDE and has plans for web based point and click interface.
Weka[30] allows for the use of the data mining capabilities in Weka and statistical analysis in R.
AirXCell provides a fully functional R Console at the bottom of their web-based AirXCell GUI.
इतर सॉफ्टवेर कडून आर भाषेसाठी व्यावसायिक आधार (कमर्शिअल सपोर्ट)
Oracle, JMP, Mathematica, MATLAB, Spotfire, SPSS, STATISTICA, Platform Symphony, Revolution Analytics and SAS
उदाहरणे
>x<-c(1,2,3,4,5,6)# Create ordered collection (vector)>y<-x^2# Square the elements of x>print(y)# print (vector) y[1]149162536>mean(y)# Calculate average (arithmetic mean) of (vector) y; result is scalar[1]15.16667>var(y)# Calculate sample variance[1]178.9667>lm_1<-lm(y~x)# Fit a linear regression model "y = f(x)" or "y = B0 + (B1 * x)"# store the results as lm_1>print(lm_1)# Print the model from the (linear model object) lm_1Call:lm(formula=y~x)Coefficients:(Intercept)x-9.3337.000>summary(lm_1)# Compute and print statistics for the fit# of the (linear model object) lm_1Call:lm(formula=y~x)Residuals:1234563.3333-0.6667-2.6667-2.6667-0.66673.3333Coefficients:EstimateStd.ErrortvaluePr(>|t|)(Intercept)-9.33332.8441-3.2820.030453*x7.00000.73039.5850.000662***---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1Residualstandarderror:3.055on4degreesoffreedomMultipleR-squared:0.9583,AdjustedR-squared:0.9478F-statistic:91.88on1and4DF,p-value:0.000662>par(mfrow=c(2,2))# Request 2x2 plot layout>plot(lm_1)# Diagnostic plot of regression model
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!