Теорија на веројатноста — гранка на математиката која се занимава со изучување на веројатноста, односно анализа на случајни појави.
Математиката ја предочува веројатноста на некој настан (чие настапување е случајно) како реален број од затворениот интервал од 0 до 1.
Веројатностите им се препишуваат на настани според аксиомите на веројатноста.
Веројатноста дека тој настан ќе се случи под услов на познатото случување на настанот е условна веројатност на под услов; неговата бројчена вредност е (сè додека не е нула). Ако условната веројатност на под услов и иста што и („безусловната“) веројатност на , тогаш и се нарекуваат независни настани. Дека оваа релација помеѓу и е симетрична, може веднаш да се види преку фактот дека тоа е исто што и
каде A и B се независни настани.
Математичарите обично ја сметаат теоријата на веројатноста за изучување на простори на веројатноста и случајни променливи — пристап воведен од Колмогоров во 1930-тите. Простор на веројатност е секоја тројка , каде
е празно множество (наречено „примерочен простор“), секој од чии членови се смета за потенцијален исход на еден експеримент. На пример, ако треба да извлечеме случајни 100 гласачи од сите гласачи и ги прашаме за кого ќе гласаат, тогаш множеството на сите низи на 100 гласачи би бил примерочниот простор Ω.
е σ-алгебра на подмножества на - неговите членови се наречени „настани“. на пример, множеството од сите низи од 100-те гласачи во кое најмалку 60 ќе гласаат за Х се поистоветува со „настанот“ во кој најмалку 60 од 100-те избрани гласачи ќе гласаат така. Да се каже дека е σ-алгебра подразбира по дефиниција дека содржи , дека комплементот на секој настан е настан, и дека унијата од било која (конечна или бесконечна) низа на настани е настан.
Треба да се спомене дека е функција дефинирана на , а не на , и често не сочинуваат ни булеан . Не секое множество исходи претставува настан.
Ако е преброиво множество, тогаш речиси секогаш го дефинираме како булеан на , т.е. кој тривијално е σ-алгебра и можеме да го создадеме најголемото со .
Така, во дискретен простор можеме да го испуштиме и да напишеме само за да го дефинираме. Во друг случај, ако е непреброиво множество и користиме , тогаш се јавува проблем со дефинирањето на мерата на веројатноста заради тоа што е премногу ,голем', т.е. пречесто ќе се јавуваат множества на кои би било незовможно да им се препише уникатна мера, отворајќи проблеми како Банах-Тарсковиот парадокс. Значи мораме да користиме помала σ-алгебра (на пр. Борелова алггебра на , која е најмалата σ-алгебра со која сите отворени множества се измерливи).
Случајна променлива е измерлива функција на . На пример, бројот на гласачите кои ќе гласаат за Х од споменатиот примерок од 100 е случајна променлива.
Ако е било која случајна променлива, нотацијата , е стенографија за , под претпоставка дека „“ е „настан“.