Стандардното отстапување на вредностите на параметрите на примероците се дефинира како стандардна грешка и претставува просечна мерка на отстапување на можните вредности на набљудуваните параметри.
Стандардната грешка е правопропорционална со големината на варијациите на белегот, а обратнопропорционална со големината на примеркот .
Термините стандардна грешка и стандардно отстапување често се поклопуваат. Контрастот помеѓу овие два термина се одразува на важна разлика помеѓу податоците опис и заклучок.Стандардна грешка е проценка на стандардното отстапување на статистиката.
Стандардна грешка на оцената на аритметичката средина на популацијата
Најчесто не располагаме со податоци за целата основна маса и поради тоа непознатата вредност на аритметичката средина М ја оценуваме врз основа на реализираната вредност во примерокот (ẍ). Бидејќи σ претставува мерка на отстапување помеѓу ẍ и М, таа покажува колкава грешка во просек правиме при оценувањето.
Ако не е познато стандардното отстапување на основната масаа тогаш стандардната грешка се пресметува непосредно при тоа користејќи ја аритметичката средина на примерокот (ẍ) и големината на примерокот.
За негрупирани податоци:
За групирани податоци:
Доколку е познато стандардното отстапување на основната маса тогаш стандардната грешка на оцената на аритметичката средина се пресметува врз основа на следната формула:
Стандардна грешка се пресметува од познат примерок , а тоа обезбедува непристрасна оценка на стандардното отстапување.
Стандардна грешка на оцената на пропорцијата на популацијата
Оцената на пропорцијата на основната маса (р0) ја добиваме така што пропорцијата на примерокот р ќе ја намалиме односно зголемиме за одреден број на стандардни грешки на оценетата релативна честота (составот), σр. Бидејќи можниот распоред на пропорциите кај доволно големите примероци(n≥30) тежи кон нормалниот распоред на масата, поради тоа интервалот на доверба се утврдува според бројот на стандардните грешки на нормалниот распоред. Реализацијата на основната вредност на р примерокот претставува оценета вредндост на стандардната грешка.
Стандардна грешка на оцената на пропорцијата
Кога примерокот е голем, наместо n-1 во именителот можеме да користиме само n. Стандардна грешка на средната вредност зависи и стандардното отстапување и големината на примерокот.
При пресметување на стандардната грешка на оценка на параметрите на основната маса со конечен број на единици и кога изборот на примерокот го обавуваме без повторување го употребуваме поправниот корективен фактор:
Стандардната грешка на аритметичката средина од примероци избрани од конечни популации е помала од стандардната грешка на аритметичките средини на примероците избрани од бесконечни популации и поради тоа добиваме потесен интервал на доверба. Смислата на поправниот фактор е во следното: стандардната грешка се намалува со зголемување на примерокот, така да кога n=N стандардната грешка е еднаква на 0. Претпоставка е дека изборот на примерокот од поголема маса за резултат ќе даде и поизразена варијација особено кога примеркот се издвојува од конечни маси.
Наводи
„Статистика за бизнис и економија“ - Др, Славе Ристески, Д-р Драган Тевдовски Скопје,2010
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!