바드리 크바라츠헬리아
|
Read other articles:
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2018) فابيان جيربر معلومات شخصية الميلاد 28 نوفمبر 1979 (العمر 43 سنة)ميونخ الطول 1.83 م (6 قدم 0 بوصة) مركز اللعب وسط الجنسية ألمانيا مسيرة الشباب سنوات ف
This article is about the play. For the 1931 film, see Are You There? (film). For the 1997 song, see Are You There? (Josh Wink song). Are You There?Opera by Ruggero LeoncavalloShirley Kellogg, the star of the farcical musical play in two actsLibrettist Albert de Courville Edgar Wallace LanguageEnglishPremiere1 November 1913 (1913-11-01)The Prince of Wales Theatre, London Are You There? is a farcical musical play in two acts composed by Ruggero Leoncavallo (with interpolations b...
Protected area in New South Wales, AustraliaBindarri National ParkNew South WalesIUCN category II (national park) Bangalore Falls, Bindarri National ParkBindarri National ParkNearest town or cityCoffs HarbourCoordinates30°17′42″S 152°55′59″E / 30.29500°S 152.93306°E / -30.29500; 152.93306Established1 January 1999 (1999-01-01)Area55.95 km2 (21.6 sq mi)[1]Managing authoritiesNational Parks and Wildlife Service (New South ...
العلاقات السويسرية الماليزية سويسرا ماليزيا سويسرا ماليزيا تعديل مصدري - تعديل العلاقات السويسرية الماليزية هي العلاقات الثنائية التي تجمع بين سويسرا وماليزيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...
Gymnotus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Gymnotiformes Subordo: Gymnotoidei Famili: Gymnotidae Genus: GymnotusLinnaeus, 1758 Spesies tipe Gymnotus carapoLinnaeus, 1758 Spesies Lihat teks Gymnotus adalah satu dari dua genus ikan air tawar Neotropis dalam keluarga Gymnotidae. Anggotanya banyak ditemukan di Amerika Selatan, Amerika Tengah, dan Meksiko bagian selatan.[1] Kekayaan spesies terbesar ditemukan di Basin Amazon...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Bertha Wegmann (dipotret oleh Georg Emil Hansen, 1891) Bertha Wegmann (1847–1926) adalah seorang pelukis Denmark dengan keterampilan dan dedikasi yang luar biasa. Dia termasuk di antara sejumlah kecil seniman wanita pada periode itu yang diakui dan d...
The Evolution of Calpurnia Tate First edition cover, illustrated by Beth White and designed by April WardAuthorJacqueline KellyCover artistBeth White, April WardCountryUnited StatesLanguageEnglishGenreYoung adult, Historical fictionPublisherHenry Holt and CompanyPublication dateMay 12, 2009 (1st edition)Media typePrint (Hardcover)Pages340 (Hardcover) (1st edition)ISBN0-312-65930-X (1st edition)OCLC262143062 (1st edition)LC ClassPZ7.K296184 Evo 2009 Children and Young Adult Lite...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (سبتمبر 2021) سالبرتراند الإحداثيات 45°04′19″N 6°53′00″E / 45.07204°N 6.883205°E / 45....
Fresco by Raphael The Expulsion of Heliodorus from the TempleArtistRaphaelYear1511–1512TypeFrescoDimensions750 cm (300 in) wideLocationApostolic Palace, Vatican City The Expulsion of Heliodorus from the Temple is a fresco of the Italian renaissance painter Raphael. It was painted between 1511 and 1512 as part of Raphael's commission to decorate with frescoes the rooms that are now known as the Stanze di Raffaello, in the Apostolic Palace in the Vatican. It is located in the room t...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Methodist College Kowloon – news · newspapers · books · scholar · JSTOR (August 2013) (Learn how and when to remove this template message) Grant school in Kowloon, Hong KongMethodist College循道中學Address50 Gascoigne Road, King's ParkKowloonHong KongCoordinates22°18...
10th episode of the 1st season of The Secret Circle DarknessThe Secret Circle episodeCharles (Gale Harold) doesn't trust Dawn (Natasha Henstridge)Episode no.Season 1Episode 10Directed byChris GrismerWritten byDavid EhrmanProduction code2J6260Original air dateJanuary 5, 2012 (2012-01-05)Guest appearances Chris Zylka Grey Damon Stepfanie Kramer Episode chronology ← PreviousBalcoin Next →Fire/Ice List of episodes Darkness is the 10th episode of the first season ...
أدب إسباني أدب ألفونسو العاشرأدب العصور الوسطىالترجمات في العصر الذهبي الإسبانيأدب عصر النهضةرواية فروسيةرواية شطاريةرواية بيزنطيةميغيل دي ثيربانتسأدب الباروكأدب عصر التنويرأدب الرومانسيةأدب الواقعيةأدب الحداثةالأولترايسموجيل 98جيل 1914جيل 27جيل الخمسيناترواية اجتما...
Piston engine with two cylinders in V configuration This article is about the two-cylinder V engine. For other uses, see V2 (disambiguation). Honda Shadow VT 125 motorcycle engine A V-twin engine, also called a V2 engine, is a two-cylinder piston engine where the cylinders are arranged in a V configuration and share a common crankshaft. The V-twin is widely associated with motorcycles, primarily installed longitudinally, though also transversely. They are also used in a variety of other land,...
History → Soviet Union → Russia NameAzov Builder61 Communards Shipyard Laid down21 July 1972 Launched14 September 1973 Commissioned25 December 1975 Decommissioned1998 FateScrapped in 2000 General characteristics Class and typeKara-class cruiser Displacement8,900 tons Length173.4 m (568.9 ft) Beam18.5 m (60.7 ft) Draft5.4 m (17.7 ft) Propulsion 4 turbine-type generators GTG-12,5A x1250 kW 1 turbine-type generator GTG-6M 600 kW Speed32 knots Range9,000 miles Co...
Bridge in Pennsylvania, United StatesShearer's Covered BridgeCoordinates40°10′17″N 76°23′23″W / 40.1715°N 76.3898°W / 40.1715; -76.3898LocaleLancaster County, Pennsylvania, United StatesCharacteristicsDesignsingle span, double Burr arch trussTotal length89 feet (27.1 m)HistoryConstructed byJacob ClareConstruction start1847Location The Shearer's Covered Bridge is a covered bridge that spans the Big Chiques Creek in Lancaster County, Pennsylvania, United...
Отказавший iMac Аварийный отказ[1][2] (также катастрофический отказ[1][2], авария[3][2], фатальный сбой[2], разг. крах, вылет, падение, крэш англ. crash) — это аварийное завершение программы или операционной системы, когда они перестают нормально фун...
Cal JohnsonBorn(1844-10-14)October 14, 1844Knoxville, Tennessee, USDiedApril 7, 1925(1925-04-07) (aged 80)Knoxville, Tennessee, USResting placeOdd Fellows Cemetery, KnoxvilleOccupation(s)Saloon owner, racetrack ownerParent(s)Cupid and Harriett Johnson[1] Caldonia (or Calvin)[2] Fackler Johnson (October 14, 1844 – April 7, 1925) was an American businessman and philanthropist, active primarily in Knoxville, Tennessee, in the late 19th and early 20th centuries. Born in...
У этого термина существуют и другие значения, см. Эксцентрик. Эксце́нтрик (от лат. ex centro — из центра) — диск (цилиндрическая поверхность) или сектор диска, насаженный на вращающийся вал так, что ось вращения диска параллельна, но не совпадает с осью вращения вала, д...
Outdated name for the Romanian language in Moldova Not to be confused with Moldavian dialect, one of several dialects of the Romanian language. Moldovanlimba moldoveneascăлимба молдовеняскэ (in Moldovan Cyrillic)Pronunciation[ˈlimba moldoveˈne̯askə]Language familySynonym of RomanianWriting systemMoldovan Cyrillic (Transnistria)Latin alphabet (Ukraine)Official statusOfficial language in TransnistriaLanguage codesISO 639-3–GlottologNone Eastern Romance ...
Any planar graph can be subdivided by removing a few vertices In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of O ( n ) {\displaystyle O({\sqrt {n}})} vertices from an n-vertex graph (where the O invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most 2 n / 3 {\disp...