메르센 소수

메르센 수(Mersenne number)는 2의 거듭제곱에서 1이 모자란 숫자를 가리킨다. 지수 에 대한 메르센 수는 로 나타내고 목록은 아래와 같다.

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767... (OEIS의 수열 A000225)

메르센 소수(Mersenne prime)는 메르센 수 중에서 소수인 수이다. 예를 들면 3과 7은 둘 다 소수이고 이므로 3과 7은 둘 다 메르센 소수이다. 반대로 은 합성수이다. 현대에 알려진 매우 큰 소수들 중에는 메르센 소수가 상당히 많다.

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951... (OEIS의 수열 A000668)

메르센 소수가 무한히 많이 존재하는지 아니면 그 개수가 정해져 있는지는 아직 알려져 있지 않다. 즉 이 말은 메르센 소수가 유한한지 무한한지에 대한 여부가 알려져있지 않았다는 것인데, n이 소수라고 해서 항상 해당 메르센 수가 소수가 되지는 않기 때문이다. 예를 들어 n=2, 3, 5, 7, 13, 17, 19 일 땐 소수가 된다. 그러나 11은 소수긴 하나 n=11일 땐 2의 11제곱에서 1을 뺀 수인 2047은 23×89로 소인수분해 가능하다. 비슷한 이유로 23도 소수이나 n=23일 땐 2의 23제곱에서 1을 뺀 수인 8388607도 47×178481로 소인수분해 할 수 있기 때문이다. 마찬가지로 n=29일 때, 37일 때, 41일 때, 그리고 43, 47일 때 등등도 2의 거듭제곱 횟수는 소수이지만, 해당 메르센 수가 소수가 아닌 경우는 무수히 많다.

메르센 수의 속성

메르센 수는 다음의 몇 가지 속성을 지닌다. :

  • 이항계수에서 1을 뺀 값이다.
  • 메르센 수의 지수가 홀수소수 이면 소인수의 형태는 다음과 같음을 페르마가 증명하였다.

(는 음이 아닌 정수)

이것은 메르센 수가 소수, 즉 메르센 소수일때도 성립한다.

또한 n이 홀수 소수인 메르센 수들의 약수들은 모두 꼴이다.

메르센 소수에 관한 정리

  • 1) 만일 이 하나의 양의 정수이면, 이항정리에 의해 다음과 같이 쓸 수 있다:

또는

이다( = ,  = 로,  = 로 놓았을 때).

증명

역사

1644년 마랭 메르센 형태가 소수가 되는 것은, 일 때 뿐이라고 발표하였다. 그러나 그 주장의 일부는 잘못임이 밝혀졌다. 목록에 포함되지 않은 , , 는 소수이며, 목록에 포함되어 있는 , 합성수이다.

리젤 수의 발견자이기도 한 스웨덴의 수학자인 한스 리젤1957년에 컴퓨터를 이용하여 18번째의 메르센 소수를 발견한 이래, 이후 컴퓨터를 활용하여 새로운 메르센 소수를 찾고 있다.

메르센 소수 찾기

다음 등식은 이 메르센 소수가 되기 위해서는 자신이 소수여야 한다는 것을 알려준다.

따라서, 메르센 소수를 찾기 위해서는 지수가 소수인 경우만 조사하면 되지만, 일반적으로 그 역은 참이 아니다. 즉 이 소수라고 하여 또한 소수인 것은 아니다. 예를 들어, 11은 소수지만 로 소인수분해된다.

메르센 소수 목록

수학의 미해결 문제
메르센 소수는 무한한가?
(더 많은 수학의 미해결 문제 보기)

현재까지 발견한 메르센 소수 표 (OEIS의 수열 A000668):

# 의 자리수 발견일 발견자
1 2 3 1 기원전 430년 경 고대 그리스 수학자
2 3 7 1 기원전 430년 경 고대 그리스 수학자
3 5 31 2 기원전 300년 경 고대 그리스 수학자
4 7 127 3 기원전 300년 경 고대 그리스 수학자
5 13 8191 4 1456년 익명
6 17 131071 6 1588년 피에트로 카탈디
7 19 524287 6 1588년 피에트로 카탈디
8 31 2147483647 10 1772년 레온하르트 오일러
9 61 2305843009213693951 19 1883년 이반 미흐비치 페르부쉰
10 89 61897001

9642690137449562111

27 1911년 R. E. Powers
11 107 16225927682921

3363391578010288127

33 1914년 R. E. Powers
12 127 17014118346046923173

1687303715884105727

39 1876년 에두아르 뤼카
13 521 6864797660130609714

9819007990813932172 6943530014330540939 4463459185543183397 6560521225596406614 5455497729631139148 0858037121987999716 6438125740282911150 57151

157 1952년 1월 30일 라파헬 로빈슨
14 607 531137992…031728127 183 1952년 1월 30일 라파헬 로빈슨
15 1,279 104079321…168729087 386 1952년 6월 25일 라파헬 로빈슨
16 2,203 147597991…697771007 664 1952년 10월 7일 라파헬 로빈슨
17 2,281 446087557…132836351 687 1952년 10월 9일 라파헬 로빈슨
18 3,217 259117086…909315071 969 1957년 9월 8일 한스 리젤
19 4,253 190797007…350484991 1,281 1961년 11월 3일 알렉산더 허비츠
20 4,423 285542542…608580607 1,332 1961년 11월 3일 알렉산더 허비츠
21 9,689 478220278…225754111 2,917 1963년 5월 11일 도널드 길리스
22 9,941 346088282…789463551 2,993 1963년 5월 16일 도널드 길리스
23 11,213 281411201…696392191 3,376 1963년 6월 2일 도널드 길리스
24 19,937 431542479…968041471 6,002 1971년 3월 4일 브리언트 터커맨
25 21,701 448679166…511882751 6,533 1978년 10월 30일 랜돈 커트 놀로라 니켈
26 23,209 402874115…779264511 6,987 1979년 2월 9일 랜돈 커트 놀
27 44,497 854509824…011228671 13,395 1979년 4월 8일 해리 넬슨데이빗 슬로빈스키
28 86,243 536927995…433438207 25,962 1982년 9월 25일 데이빗 슬로빈스키
29 110,503 521928313…465515007 33,265 1988년 1월 28일 월크 콜킷루크 웰시
30 132,049 512740276…730061311 39,751 1983년 9월 19일[1] 데이빗 슬로빈스키
31 216,091 746093103…815528447 65,050 1985년 9월 1일[1] 데이빗 슬로빈스키
32 756,839 174135906…544677887 227,832 1992년 2월 19일 데이빗 슬로빈스키와 폴 게이지
33 859,433 129498125…500142591 258,716 1994년 1월 4일 데이빗 슬로빈스키와 폴 게이지
34 1,257,787 412245773…089366527 378,632 1996년 9월 3일 데이빗 슬로빈스키와 폴 게이지 [1]
35 1,398,269 814717564…451315711 420,921 1996년 11월 13일 GIMPS / 조엘 아르멩고 [2][깨진 링크(과거 내용 찾기)]
36 2,976,221 623340076…729201151 895,932 1997년 8월 24일 GIMPS / 고든 스펜스 [3][깨진 링크(과거 내용 찾기)]
37 3,021,377 127411683…024694271 909,526 1998년 1월 27일 GIMPS / 롤랜드 클락슨 [4][깨진 링크(과거 내용 찾기)]
38 6,972,593 437075744…924193791 2,098,960 1999년 6월 11일 GIMPS / 난야 하이라트왈라 [5]
39 13,466,917 924947738…256259071 4,053,946 2001년 11월 14일 GIMPS / 마이클 카메론 [6]
40 20,996,011 125976895…855682047 6,320,430 2003년 11월 17일 GIMPS / 마이클 셰이퍼 [7]
41 24,036,583 299410429…733969407 7,235,733 2004년 5월 15일 GIMPS / 조지 핀들리 [8]
42 25,964,951 122164630…577077247 7,816,230 2005년 2월 18일 GIMPS / 마르틴 노바크 [9]
43 30,402,457 315416475…652943871 9,152,052 2005년 9월 15일 GIMPS / 커티스 쿠퍼스티븐 분 [10]
44 32,582,657 124575026…053967871 9,808,358 2006년 9월 4일 GIMPS / 커티스 쿠퍼와 스티븐 분 [11]
45 37,156,667 202254406…308220927 11,185,272 2008년 9월 6일 GIMPS / Hans-Michael Elvenich [12]
46 42,643,801 169873516…562314751 12,837,064 2009년 4월 12일** GIMPS / Odd Magnar Strindmo
47 43,112,609 316470269…697152511 12,978,189 2008년 8월 23일 GIMPS / Edson Smith [13]
48 57,885,161 581887266…724285951 17,425,170 2013년 1월 25일 GIMPS / Curtis Cooper [14]
49* 74,207,281 300376418…086436351 22,338,618 2015년 9월 17일*** GIMPS / Curtis Cooper [15]
50* 77,232,917 467333183…762179071 23,249,425 2017년 12월 26일 GIMPS / Jon Pace
51* 82,589,933 110847779…217902591 24,862,048 2018년 12월 7일 GIMPS / Patrick Laroche
52* 136,279,841 881694327…486871551 41,024,320 2024년 10월 12일 GIMPS / Luke Durant

44번째 알려진 메르센 소수를 시각적으로 보여 주기 위해서는 1페이지 당, 10진수 75개 자리수의 숫자를 50줄씩 쓴 2,616페이지가 필요하다.

*표의 48번째 수인 과 49번째 수인 사이에 아직 발견되지 않은 다른 메르센 소수가 있는지는 아직 알려져 있지 않다. 따라서 이 번호들은 바뀔 수도 있다. 소수가 작은 소수부터 순차적으로 발견되는 것은 아니다. 예를 들어, 29번째 메르센 소수는 30번째와 31번째 소수의 발견 이후에 발견되었다.

**M42,643,801는 2009년 4월 12일 컴퓨터에 의해 처음 발견되었다. 그러나 6월 4일까지 이 사실을 인지한 사람은 아무도 없었다. 그래서, 발견일을 4월 12일 또는 6월 4일로 간주한다. 발견자 스트린드모(Strindmo)는 alias Stig M. Valstad를 사용한 것으로 보인다.

***M74,207,281는 2015년 9월 17일 컴퓨터에 의해 처음 발견되었다. 그러나 2016년 1월 7일까지 이 사실을 인지한 사람은 아무도 없었다. 그래서, 발견일을 2015년 9월 17일 또는 2016년 1월 7일로 간주한다.

완전수

메르센 소수는 완전수와 여러 관련성이 있어 흥미롭다. 기원전 4세기에 유클리드이 메르센 소수이면 다음과 같이 짝수 완전수임을 보였다.

18세기오일러는 모든 짝수 완전수는 이와 같은 형태를 갖는다는 것을 증명했다. 홀수 완전수는 아직 발견되지 않았으며 존재하지 않는 것으로 추측된다.

일반화

2진법 표현은 숫자 1이 번 반복된다. 예를 들면, 25 - 1 = 111112와 같이 표기된다. 그러므로 메르센 소수는 2를 밑으로 하는 단위 반복 소수이다.

같이 보기

각주

  1. Landon Curt Noll, Mersenne Prime Digits and Names.

외부 링크

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!