에서 갈퀴 분기가 일어나며, 원점은 세 개의 평형점으로 분기한다. 원점은 이제 불안정 평형점이 되지만, 나머지 두 평형점은 안정적이다. 일 경우 거의 모든 초기 조건은 두 안정적 평형점으로 수렴한다.
에서 호프 분기가 일어나며, 모든 평형점이 불안정해진다. 대신 두 개의 안정적인 극한 주기 궤도, 이 생기며, 일 경우 거의 모든 초기 조건은 두 극한 주기 궤도 가운데 더 가까운 쪽으로 수렴한다.
일 경우, 로렌즈 방정식은 일시적 혼돈(영어: transient chaos)을 보인다. 즉, 두 안정적 극한 주기 궤도, 가 존재하며 거의 모든 궤도는 이 둘 가운데 하나로 수렴하지만, 일부 초기 조건에 대하여 어느 쪽으로 수렴하는지 여부는 초기 조건에 대하여 민감하게 의존한다.
일 경우, 로렌즈 방정식은 일부 초기 조건에 대하여 혼돈을 보이기 시작한다. 그러나 두 극한 주기 궤도는 여전히 안정적이다.
이게 되면 두 극한 주기 궤도는 더 이상 안정적이지 않으며, 거의 모든 초기 조건에 대하여 혼돈이 발생한다.
특히, 로렌즈가 연구한 경우인 인 경우는 혼돈적이다. 이 경우, 로렌즈 끌개의 하우스도르프 차원은 약 2.06 ± 0.01이다.
그러나 인 경우에도, 특수한 의 값에서는 혼돈이 발생하지 않을 수 있다. 예를 들어, 인 경우 안정적 극한 주기 궤도가 존재한다.
매우 큰 의 값에 대하여 로렌즈 방정식은 다시 비혼돈적이게 된다. 구체적으로, 일 경우 거의 모든 궤도는 극한 주기 궤도로 수렴하게 된다.
다양한 매개 변수 값에서, 로렌즈 끌개는 다음과 같은 모양을 가진다. 여기서는 , 으로 고정시키고, 값을 바꾼다.
ρ=9
ρ=13
ρ=14
ρ=15
ρ=28
역사
1963년 미국의 기상학자인 에드워드 노턴 로렌즈가 〈결정론적 비주기 흐름〉(영어: Deterministic nonperiodic flow)이라는 논문에서 이 방정식을 발표하였다.[1] 로렌즈 방정식의 유도는 프랑스 물리학자 앙리 베나르(Henri Bénard) (1874–1939)와 영국 물리학자 존 윌리엄 스트럿 레일리(1842–1919)의 이론들이 기초가 된다. 이 방정식의 초기 조건에 대한 민감성의 발견은 혼돈 이론의 시초로 여겨진다.
Yorke, J. A. and Yorke, E. D. "Metastable Chaos: The Transition to Sustained Chaotic Oscillation in a Model of Lorenz." J. Stat. Phys. 21, 263-277, 1979.
Williams, R. F. "The Structure of Lorenz Attractors." Publ. Math. IHÉS 50, 321-347, 1979.
Rand, D. "The Topological Classification of Lorenz Attractors." Math. Proc. Cambridge Philos. Soc. 83, 451-460, 1978.